Skip to main content
Log in

Low molecular weight aromatic compounds possessing nonflammable and flammable characteristics in calcium fluoride nanocomposite matrices after calcination at 800 °C

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Calcium chloride reacted with potassium fluoride in the presence of low molecular weight aromatic compounds (ArH) such as bisphenol AF, bisphenol A, bisphenol F, biphenyl, and 1-(2-naphthyl)ethanol under alkaline conditions to afford new calcium fluoride/ArH composites. Dynamic light scattering and field emission scanning electron micrographs measurements show that these calcium fluoride/ArH composites are nanometer size-controlled fine particles and have a good dispersibility and stability in water, tetrahydrofuran, 1,2-dichloroethane, methanol, dimethyl sulfoxide, N,N-dimethylformamide, and 2-propanol. Interestingly, aromatic compounds possessing acidic hydroxyl groups in the calcium fluoride nanocomposites were found to exhibit a nonflammable characteristic even after calcination at 800 °C, although the corresponding aromatic compounds possessing neither acidic hydroxyl groups nor hydroxyl groups in the nanocomposites exhibited a usual flammable characteristic under similar conditions. In contrast, calcium fluoride/ArH nanocomposites, which were prepared under no catalytic conditions, afforded a clear weight loss corresponding to the contents of ArH in the composites to exhibit a usual flammable characteristic.

Ar-OH can exhibit a nonflammable characteristic in calcium fluoride nanocomposite matrices even after calcination at 800°C

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Scheme 3
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gomez-Romero P, Sanchez C (eds) (2004) Functional hybrid materials. Wiley, Weinheim

    Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol–gel science. Academic, Boston

    Google Scholar 

  3. Pedroso M, Dias M, Azuma C, San Gil R, Mothe C (2003) Colloid Polym Sci 281:19–26

    Article  CAS  Google Scholar 

  4. Liu Y-L, Li S-H (2004) Macromol Rapid Commun 25:1392–1395

    Article  CAS  Google Scholar 

  5. Harmer MK, Farneth WE, Sun Q (1996) J Am Chem Soc 118:7708–7715

    Article  CAS  Google Scholar 

  6. Cho J-W, Sul K-I (2001) Fibers Polym 2:135–140

    Article  CAS  Google Scholar 

  7. Yano S, Okubo N, Takahashi K (1996) Macromol Symp 108:270–289

    Article  Google Scholar 

  8. Fabbri P, Messori M, Montecchi M, Nannarone S, Pasquali L, Pilati F, Tonelli C, Toselli M (2006) Polymer 47:1055–1062

    Article  CAS  Google Scholar 

  9. Chen Y-C, Tsai C-C, Lee Y-D (2004) J Polym Sci Part A Polym Chem 42:1789–1807

    Article  CAS  Google Scholar 

  10. Shin J, Cho DW, Bae W, Kim H (2010) Colloid Polym Sci 288:63–72

    Article  CAS  Google Scholar 

  11. Sawada H (2012) Polym Chem 3:46–65

    Article  CAS  Google Scholar 

  12. Sawada H, Narumi T, Kodama S, Kamijo M, Ebara R, Sugiya M, Iwasaki Y (2007) Colloid Polym Sci 285:977–983

    Article  CAS  Google Scholar 

  13. Sawada H, Kakehi H, Tashima T, Nishiyama Y, Miura M, Isu N (2009) J Appl Polym Sci 112:3482–3487

    Article  CAS  Google Scholar 

  14. Sawada H, Liu X, Goto Y, Kikuchi M, Tashima T, Nishida M (2011) J Colloid Interface Sci 356:8–15

    Article  CAS  Google Scholar 

  15. Sawada H, Tashima T, Kakehi H, Nishiyama Y, Kikuchi M, Miura M, Sato Y, Isu N (2010) Polym J 42:167–171

    Article  CAS  Google Scholar 

  16. Sawada H, Tashima T, Nishiyama Y, Kikuchi M, Goto Y, Kostov G, Ameduri B (2011) Macromolecules 44:1114–1124

    Article  CAS  Google Scholar 

  17. Sawada H, Matsuki YY, Goto Y, Kodama S, Sugiya M, Nishiyama Y (2010) Bull Chem Soc Jpn 83:75–81

    Article  CAS  Google Scholar 

  18. Pauling L (1967) The chemical bond. Cornell University Press, New York

  19. Walsh R (1981) Acc Chem Res 14:246–252

    Article  CAS  Google Scholar 

  20. Blue G-D, Green JW, Bautista RG, Margrave JL (1963) J Phys Chem 67:877–882

    Article  CAS  Google Scholar 

  21. http://www.crystran.co.uk/calcium-fluoride-caf2.htm

  22. Tropf WJ (1995) Opt Eng 34:1369–1373

    Article  CAS  Google Scholar 

  23. Sawada H, Kikuchi M, Nishida M (2011) J Polym Sci Part A Polym Chem 49:1070–1078

    Article  CAS  Google Scholar 

  24. Gelmboldt VO, Ganin EV, Fonari MS, Koroeva LV, Ivanov YE, Botoshansky MM (2009) J Fluorine Chem 130:428–433

    Article  CAS  Google Scholar 

  25. Reiß GJ (1998) Acta Crystallogr C54:1489–1491

    Google Scholar 

  26. Jalbout AF, Jiang ZY, Ouasri A, Jeghnou H, Rhandour A, Dhamelincourt MC, Dhamelincourt P, Mazzah A (2003) Vib Spectroc 33:21–30

    Article  CAS  Google Scholar 

  27. Conley BD, Yearwood BC, Parkin S, Atwood DA (2002) J Fluorine Chem 115:155–160

    Article  CAS  Google Scholar 

  28. Gelmboldt VO, Ganin EV, Domasevitch KV (2007) Acta Crystallogr C63:o530–o534

    CAS  Google Scholar 

  29. Jalbout AF, Ouasri A, Jeghnou H, Rhandour A (2007) Vib Spectrosc 44:94–100

    Article  CAS  Google Scholar 

  30. Mattia CA, Ortona O, Puliti R, Cascarano G, Giacovazzo C (1995) J Mol Struct 350:63–69

    Article  CAS  Google Scholar 

  31. Thaimattam R, Szafran M, Dega-Szafran Z, Jaskolski M (2008) Acta Crystallogr B64:483–490

    CAS  Google Scholar 

  32. All calculations were performed using the Gaussian09, Revision A.02. The structures were fully optimized using the B3LYP functional with the 6-31G(d) basis set. All structures were characterized by frequency calculation, and energies were corrected by the zero point energy. See: Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC et al (2004) Gaussian 03, Revision C.02; Gaussian, Inc., Wallingford CT

Download references

Acknowledgments

This work was partially supported by a grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Sawada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

UV–vis spectra of CaF2/bisphenol A nanocomposites (run 2 in Table 1) before (a) and after (b) calcination at 800 °C, and parent bisphenol A (c) in methanol solutions: each concentration of nanocomposites: 0.2 g/dm3 (DOC 125 kb)

ESM Fig. 2

UV–vis spectra of CaF2/bisphenol F nanocomposites (run 3 in Table 1) before (a) and after (b) calcination at 800 °C, and parent bisphenol F (c) in methanol solutions: each concentration of nanocomposites: 0.2 g/dm3 (DOC 175 kb)

ESM Fig. 3

UV–vis spectra of CaF2/biphenyl nanocomposites (run 4 in Table 1) before (a) and after (b) calcination at 800 °C, and parent biphenyl (c) in methanol solutions: each concentration of nanocomposites: 5 mg/dm3 (DOC 107 kb)

ESM Fig. 4

UV–vis spectra of CaF2/Naph-EtOH nanocomposites (run 5 in Table 1) before (a) and after (b) calcination at 800 °C, and parent Naph-EtOH (c) in methanol solutions: each concentration of nanocomposites: 0.02 g/dm3 (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, T., Nishida, M., Fukaya, H. et al. Low molecular weight aromatic compounds possessing nonflammable and flammable characteristics in calcium fluoride nanocomposite matrices after calcination at 800 °C. Colloid Polym Sci 291, 945–953 (2013). https://doi.org/10.1007/s00396-012-2813-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2813-9

Keywords

Navigation