Skip to main content
Log in

Exploring the structure–property relationships of ultrasonic/MRI dual imaging magnetite/PLA microbubbles: magnetite@Cavity versus magnetite@Shell systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Two types of magnetite/PLA composite microbubbles with different magnetite loading sites (magnetite nanoparticles [MNPs] were loaded in shell or core part), named as Fe3O4@Shell and Fe3O4@Cavity microbubbles, were respectively fabricated by an improved W1/O/W2 double emulsification approach and by an interfacial coprecipitation joint double emulsification approach. The preparation parameters were crucial factors for controlling the morphologies and structures of the microbubbles. To clarify the relationship between their structural characteristics and their properties, the T 2-weighted magnetic resonance imaging (MRI) capabilities as well as the sound attenuation behavior of the microbubbles were investigated. The results demonstrate that the encapsulation of MNPs in either the inner cavity or the shell provides improved sound attenuation, the two types of microbubbles provide comparable sound attenuation enhancement properties, whereas Fe3O4@Shell microbubbles exhibit better T 2-weighted MRI capabilities. The T 2 relaxation time decreased from 219.5 to 62.1 ms for the Fe3O4@Cavity microbubbles and from 163.8 to 45.7 ms for the Fe3O4@Shell microbubbles, as the iron concentration increased from 0.05 to 1 mM. In addition, both types of microbubbles exhibit no cytotoxicity to either NRK or BRL-3A metabolic cell cultures. These results suggest that these magnetite-containing microbubbles have great potential as ultrasonic/MR dual contrast imaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mayer CR, Bekeredjian R (2008) Adv Drug Deliv Rev 60:1177

    Article  CAS  Google Scholar 

  2. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R (2004) Adv Drug Deliv Rev 56:1291

    Article  CAS  Google Scholar 

  3. Bull JL (2007) Expert Opin Drug Deliv 4:475

    Article  CAS  Google Scholar 

  4. Riess JG (2001) Chem Rev 101:2797

    Article  CAS  Google Scholar 

  5. Pisani E, Tsapis N, Paris J, Nicolas V, Cattel L, Fattal E (2006) Langmuir 22:4397

    Article  CAS  Google Scholar 

  6. Pisani E, Tsapis N, Galaz B, Santin M, Berti R, Taulier N, Kurtisovski E, Lucidarme O, Ourevitch M, Doan BT, Beloeil JC, Gillet B, Urbach W, Bridal SL, Fattal E (2008) Adv Funct Mater 18:2963

    Article  CAS  Google Scholar 

  7. Yang F, Li YX, Chen ZP, Zhang Y, Wu JR, Gu N (2009) Biomaterials 30:3882

    Article  CAS  Google Scholar 

  8. Diaz-Lopez R, Tsapis N, Libong D, Chaminade P, Connan C, Chehimi MM, Berti R, Taulier N, Urbach W, Nicolas V, Fattal E (2009) Biomaterials 30:1462

    Article  CAS  Google Scholar 

  9. Borden MA, Zhang H, Gillies RJ, Dayton PA, Ferrara KW (2008) Biomaterials 29:597

    Article  CAS  Google Scholar 

  10. Bouakaz A, De Jong N, Cachard C (1998) Ultrasound Med Biol 24:469

    Article  CAS  Google Scholar 

  11. Raisinghani A, DeMaria AN (2002) Am J Cardiol 90:3J

    Article  Google Scholar 

  12. Stride E, Edirisinghe M (2009) Med Biol Eng Comput 47:883

    Article  Google Scholar 

  13. Frenkel PA, Chen SY, Thai T, Shohet RV, Grayburn PA (2002) Ultrasound Med Biol 28:817

    Article  Google Scholar 

  14. Sonne C, Xie F, Lof J, Oberdorfer J, Phillips P, Everbach EC, Porter TR (2003) J Am Soc Echocardiogr 16:1178

    Article  Google Scholar 

  15. Sboros V (2008) Adv Drug Deliv Rev 60:1117

    Article  CAS  Google Scholar 

  16. Stride E, Edirisinghe M (2008) Soft Matter 4:2350

    Article  CAS  Google Scholar 

  17. Shchukin DG, Kohler K, Mohvald H, Sukhorukov GB (2005) Angew Chem Int Ed 44:3310

    Article  CAS  Google Scholar 

  18. Yang F, Li L, Li YX, Chen ZP, Wu JR, Gu N (2008) Phys Med Biol 53:6129

    Article  Google Scholar 

  19. Straub JA, Chickering DE, Church CC, Shah B, Hanlon T, Bernstein H (2005) J Control Release 108:21

    Article  CAS  Google Scholar 

  20. Correas JM, Bridal L, Lesavre A, Mejean A, Claudon M, Helenon O (2001) Eur Radiol 11:1316

    Article  CAS  Google Scholar 

  21. Sun C, Lee JSH, Zhang MQ (2008) Adv Drug Deliv Rev 60:1252

    Article  CAS  Google Scholar 

  22. Alexander AL, McCreery TT, Barrette TR, Gmitro AF, Unger EC (1996) Magn Reson Med 35:801

    Article  CAS  Google Scholar 

  23. Wong KK, Huang I, Kim YR, Tang HY, Yang ES, Kwong KK, Wu EX (2004) Magn Reson Med 52:445–452

    Article  CAS  Google Scholar 

  24. Ueguchi T, Tanaka Y, Hamada S, Kawamoto R, Ogata Y, Matsumoto M, Nakamura H, Johkoh T (2006) Magn Reson Med Sci 5:147

    Article  CAS  Google Scholar 

  25. Yan G-P, Robinson L, Hogg P (2007) Radiography 13:e5

    Article  Google Scholar 

  26. Yang F, Chen P, He W, Gu N, Zhang XZ, Fang K, Zhang Y, Sun JF, Tong JY (2011) Small 6:1300

    Article  Google Scholar 

  27. Park JI, Jagadeesan D, Williams R, Oakden W, Chung SY, Stanisz GJ, Kumacheva E (2010) Acs Nano 4:6579

    Article  CAS  Google Scholar 

  28. Lu R, Dou HJ, Qiu YY, Zhang D, Sun K, Zhang YQ (2009) Colloid Polym Sci 287:683

    Article  CAS  Google Scholar 

  29. Lu R, Tao K, Sun K, Dou HJ, Xu B (2010) Colloid Polym Sci 288:353

    Article  CAS  Google Scholar 

  30. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891

    Article  CAS  Google Scholar 

  31. Cavalieri F, El Hamassi A, Chiessi E, Paradossi G (2005) Langmuir 21:8758

    Article  CAS  Google Scholar 

  32. Hu Y, Ge Y, Zhang D, Zheng HR, Gong X-F (2009) Acta Phys Sin 58:4746

    Google Scholar 

  33. Tao K, Dou HJ, Sun K (2006) Chem Mater 18:5273

    Article  CAS  Google Scholar 

  34. Koo HY, Chang ST, Choi WS, Park JH, Kim DY, Velev OD (2006) Chem Mater 18:3308

    Article  CAS  Google Scholar 

  35. Sander JS, Studart AR (2011) Langmuir 27:3301

    Article  CAS  Google Scholar 

  36. Lu R, Xu B, Tao K, Dou H, Qiu Y, Sun K, Zhang Y, Wu L, Sun K (2012) Colloid Polym Sci 290:63

    Article  CAS  Google Scholar 

  37. Garti N (1997) Colloids Surf Physicochem Eng Asp 123:233

    Article  Google Scholar 

  38. Minami H, Kobayashi H, Okubo M (2005) Langmuir 21:5655

    Article  CAS  Google Scholar 

  39. Dou HJ, Xu B, Tao K, Tang MH, Sun K (2008) J Mater Sci Mater Med 19:2575

    Article  CAS  Google Scholar 

  40. Kim DK, Mikhaylova M, Wang FH, Kehr J, Bjelke B, Zhang Y, Tsakalakos T, Muhammed M (2003) Chem Mater 15:4343

    Article  CAS  Google Scholar 

  41. Park JH, von Maltzahn G, Zhang LL, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Adv Mater 20:1630

    Article  CAS  Google Scholar 

  42. Jaganathan H, Hugar DL, Ivanisevic A (2011) ACS Appl Mater Intefaces 3:1282

    Article  CAS  Google Scholar 

  43. Zhang D, Gong XF, Liu JH, Shao LZ, Li XR, Zhang QL (2000) Ultrasound Med Biol 26:347

    Article  CAS  Google Scholar 

  44. Asanuma T, Belohlavek M, Viggen K, Seward JB (2001) J Am Coll Cardiol 37:416A

    Article  Google Scholar 

  45. Greis C (2004) Eur Radiol 14:P11

    Article  Google Scholar 

  46. Stride E, Saffari N (2005) IEEE T Ultrason FERR 52:2332

    Article  Google Scholar 

  47. Lindner JR (2004) Nat Rev Drug Discov 3:527

    Article  CAS  Google Scholar 

  48. Vila A, Gill H, McCallion O, Alonso MJ (2004) J Controlled Release 98:231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (nos. 20904032, 21174082), Open Fund of State Key Lab of Metal Matrix Composites and Shanghai Jiao Tong University Chen Xing Young Scholars Program. We thank the Instrumental Analysis Center of Shanghai Jiao Tong University for their assistance with the measurements. We also thank Shanghai Sunny New Technology Development Co. Ltd. for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjing Dou or Kang Sun.

Additional information

Bin Xu and Rong Lu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Lu, R., Dou, H. et al. Exploring the structure–property relationships of ultrasonic/MRI dual imaging magnetite/PLA microbubbles: magnetite@Cavity versus magnetite@Shell systems. Colloid Polym Sci 290, 1617–1626 (2012). https://doi.org/10.1007/s00396-012-2682-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2682-2

Keywords

Navigation