Skip to main content
Log in

Structure and acoustical properties control of magnetite/PLA composite microbubbles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) microbubbles and magnetite/PLA composite microbubbles with various structures and controllable average size were prepared by a modified double emulsion–solvent evaporation process, and sound attenuation spectrum was performed to investigate the influence of size, composite structure, and magnetite loading on the acoustical properties of microbubbles. With the increase of time or energy of the emulsification, the inner structure of composite microbubbles changed continuously from honeycomb to solid structure, accompanied by the change of surface morphology and the decrease of average particle size. The sound attenuation and resonance frequency of concentric microbubbles were higher than those of other structures, while microbubbles with multicavities had the lowest sound attenuation and resonance frequency. The difference in the acoustical properties was related to their different structures and water permeability. In vitro ultrasonography of composite microbubbles showed a higher video intensity than that of PLA microbubbles, which was consistent with their sound attenuation spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mayer CR, Bekeredjian R (2008) Adv Drug Deliv Rev 60:1177

    Article  CAS  Google Scholar 

  2. VanLiew HD, Raychaudhuri S (1997) J Appl Physiol 82:2045

    CAS  Google Scholar 

  3. Borden MA, Zhang H, Gillies RJ, Dayton PA, Ferrara KW (2008) Biomaterials 29:597

    Article  CAS  Google Scholar 

  4. Pisani E, Tsapis N, Paris J, Nicolas V, Cattel L, Fattal E (2006) Langmuir 22:4397

    Article  CAS  Google Scholar 

  5. Bouakaz A, De Jong N, Cachard C (1998) Ultrasound Med Biol 24:469

    Article  CAS  Google Scholar 

  6. Raisinghani A, DeMaria AN (2002) Am J Cardiol 90:3

    Article  Google Scholar 

  7. Grayburn PA (2002) Echocardiogr J Card 19:259

    Article  Google Scholar 

  8. Sboros V (2008) Adv Drug Deliv Rev 60:1117

    Article  CAS  Google Scholar 

  9. Sonne C, Xie F, Lof J, Oberdorfer J, Phillips P, Everbach EC, Porter TR (2003) J Am Soc Echocardiogr 16:1178

    Article  Google Scholar 

  10. Soetanto K, Chan M (2000) Ultrasound Med Biol 26:81

    Article  CAS  Google Scholar 

  11. Schutt EG, Klein DH, Mattrey RM, Riess JG (2003) Angew Chem Int Edit 42:3218

    Article  CAS  Google Scholar 

  12. El-Sherif DM, Wheatley MA (2003) J Biomed Mater Res A 66A:347

    Article  CAS  Google Scholar 

  13. Straub JA, Chickering DE, Church CC, Shah B, Hanlon T, Bernstein H (2005) J Control Release 108:21

    Article  CAS  Google Scholar 

  14. Yang F, Li L, Li YX, Chen ZP, Wu JR, Gu N (2008) Phys Med Biol 53:6129

    Article  Google Scholar 

  15. Yang F, Li YX, Chen ZP, Zhang Y, Wu JR, Gu N (2009) Biomaterials 30:3882

    Article  CAS  Google Scholar 

  16. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891

    Article  CAS  Google Scholar 

  17. Cavalieri F, El Hamassi A, Chiessi E, Paradossi G (2005) Langmuir 21:8758

    Article  CAS  Google Scholar 

  18. Zhang D, Kushibiki J, Zou W (2006) Chinese Phys Lett 23:2807

    Article  Google Scholar 

  19. Tao K, Dou HJ, Sun K (2006) Chem Mater 18:5273

    Article  CAS  Google Scholar 

  20. Liu XQ, Kaminski MD, Guan YP, Chen HT, Liu HZ, Rosengart AJ (2006) J Magn Magn Mater 306:248

    Article  CAS  Google Scholar 

  21. Paragkumar NT, Edith D, Six J-L (2006) Appl Surf Sci 253:2758

    Article  Google Scholar 

  22. Okassa LN, Marchais H, Douziech-Eyrolles L, Cohen-Jonathan S, Souce M, Dubois P, Chourpa I (2005) Int J Pharm 302:187

    Article  Google Scholar 

  23. Dou HJ, Xu B, Tao K, Tang MH, Sun K (2008) J Mater Sci Mater M 19:2575

    Article  CAS  Google Scholar 

  24. Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schaffler F, Heiss W (2007) J Am Chem Soc 129:6352

    Article  CAS  Google Scholar 

  25. Garti N (1997) Food Sci Technol Leb 30:222

    Article  CAS  Google Scholar 

  26. Kanouni M, Rosano HL, Naouli N (2002) Adv Colloid Interfac 99:229

    Article  CAS  Google Scholar 

  27. Rosca ID, Watari F, Uo M (2004) J Control Release 99:271

    Article  CAS  Google Scholar 

  28. Simamora P, Chern W (2006) J Drugs Dermatol 5:436

    Google Scholar 

  29. Minami H, Kobayashi H, Okubo M (2005) Langmuir 21:5655

    Article  CAS  Google Scholar 

  30. Zhang D, Gong X-f, Liu J-h, Shao L-z, Li X-r, Zhang Q-l (2000) Ultrasound Med Biol 26:347

    Article  CAS  Google Scholar 

  31. Asanuma T, Belohlavek M, Bae RY, Greenleaf JF, Seward JB (2001) J Am Soc Echocardiogr 14:789

    Article  CAS  Google Scholar 

  32. Greis C (2004) Eur Radiol 14:11

    Article  Google Scholar 

  33. Miller AP, Nanda NC (2004) Ultrasound Med Biol 30:425

    Article  Google Scholar 

  34. Olbrich C, Hauff P, Scholle F, Schmidt W, Bakowsky U, Briel A, Schirner M (2006) Biomaterials 27:3549

    CAS  Google Scholar 

  35. Grishenkov D, Pecorari C, Brismar TB, Paradossi G (2009) Ultrasound Med Biol 35:1127

    Article  Google Scholar 

  36. Klibanov AL (1999) Adv Drug Deliv Rev 37:139

    Article  CAS  Google Scholar 

  37. Lindner JR (2004) Nat Rev Drug Discov 3:527

    Article  CAS  Google Scholar 

  38. Park JI, Jagadeesan D, Williams R, Oakden W, Chung SY, Stanisz GJ, Kumacheva E (2010) ACS Nano 4:6579

    Article  CAS  Google Scholar 

  39. Stride E, Saffari N (2005) IEEE T Ultrason Ferr 52:2332

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (no. 20904032, 10974093), Science and Technology Committee of Shanghai (project no. 05XD14015) and Shanghai Education Committee (project no. 09YZ103), State Key Lab of Metal Matrix Composites and the Shanghai Jiao Tong University Foundation of Medicine-Engineering Cross-Disciplinary Research (project no. YG2009ZD202). We thank Instrumental Analysis Center of SJTU for the assistance on measurements. We also thank Shanghai Sunny New Technology Development Co. Ltd. for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjing Dou or Kang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, R., Xu, B., Tao, K. et al. Structure and acoustical properties control of magnetite/PLA composite microbubbles. Colloid Polym Sci 290, 63–71 (2012). https://doi.org/10.1007/s00396-011-2523-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2523-8

Keywords

Navigation