Skip to main content

Advertisement

Log in

Highly conductive and mechanically robust multiwalled carbon nanotube-polyamide nanocomposites via noncovalent functionalization

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrically conductive multiwalled carbon nanotube (MWNT)/polyamide 6 (PA 6) nanocomposite films with high mechanical strength were fabricated by blending modified MWNTs with PA 6 polymer. The surface functionalization of MWNTs, which were modified using ureidopyrimidinone (upy) and pyrene-upy through covalent and noncovalent methods, respectively, significantly contributed to the uniform dispersion of MWNTs in PA 6, improving the electrical and mechanical properties of its nanocomposite. Particularly, noncovalent functionalization using pyrene-upy-MWNTs was more effective in achieving high electrical conductivities than covalent functionalization using upy-MWNTs. Pyrene-upy-MWNT/PA 6 nanocomposites with the highest electrical conductivity of 4.18 Scm−1, tensile strength of 39 MPa, and Young’s modulus of 911 MPa exhibited excellent electromagnetic interference (EMI) shielding effectiveness of 57.8 dB mm−1. These results suggest that the simple and effective preparation of MWNT/PA 6 nanocomposites using our noncovalent modification with pyrene-upy can provide benefits for application area required electrical conductivity and mechanical strength such as EMI shielding.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen J, Liu B, Gao X, Xu D (2018) A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes. RSC Adv 8:28048–28085

    Article  CAS  Google Scholar 

  2. Kim JH, Hwang J-Y, Hwang HR, Kim HS, Lee JH, Seo J-W, Shin US, Lee S-H (2018) Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci Rep 8:1375

    Article  Google Scholar 

  3. Li YM, Pang M, Feng S, Zhang J, Zhang C (2015) Effects of multi-walled carbon nanotube structures on the electrical and mechanical properties of silicone rubber filled with multi-walled carbon nanotubes. J Mater Chem C 3:5573–5579

    Article  CAS  Google Scholar 

  4. Yang M, Weng L, Zhu H, Zhang F, Fan T, Zhang D (2017) Simultaneously improving the mechanical and electrical properties of poly(vinyl alcohol) composites by high-quality graphitic nanoribbons. Sci Rep 7:17137

    Article  Google Scholar 

  5. Mohamed MG, Hsu K-C, Kuo S-W (2015) Bifunctional polybenzoxazine nanocomposites containing photo-crosslinkable coumarin units and pyrene units capable of dispersing single-walled carbon nanotubes. Polym Chem 6:2423–2433

    Article  CAS  Google Scholar 

  6. Shih H-K, Hsieh C-C, Mohamed MG, Zhu C-Y, Kuo S-W (2016) Ternary polybenzoxazine/POSS/SWCNT hybrid nanocomposites stabilized through supramolecular interactions. Soft Mater 12:1847–1858

    Article  CAS  Google Scholar 

  7. Mohamed MG, Kuo S-W (2019) Functional silica and carbon nanocomposites based on polybenzoxazines. Macromol Chem Phys 220:1800306

    Article  Google Scholar 

  8. Samy MM, Mohamed MG, El-Mahdy AFM, Wu KC-W, Kuo S-W (2021) High-performance supercapacitor electrodes prepared from dispersions of tetrabenzonaphthalene-based conjugated microporous polymers and carbon nanotubes. ACS Appl Mater Interf 13:51906–51916

    Article  CAS  Google Scholar 

  9. Cheng C-C, Wang Y-S, Chen J-K, Lee D-J (2016) Supramolecular electrospun nanofibers with high conductivity at ultra-low carbon nanotube content. J Mater Chem C 4:5207–5213

    Article  CAS  Google Scholar 

  10. Jiang G, Song S, Zhai Y, Feng C, Zhang Y (2016) Improving the filler dispersion of polychloroprene/carboxylated multi-walled carbon nanotubes composites by non-covalent functionalization of carboxylated ionic liquid. Compos Sci Technol 123:171

    Article  CAS  Google Scholar 

  11. Pramanik C, Gissinger JR, Kumar S, Heinz H (2017) Carbon nanotube dispersion in solvents and polymer solutions: mechanisms, assembly, and preferences. ACS Nano 11:12805–12816

    Article  CAS  Google Scholar 

  12. Wang X, Xing W, Zhang P, Song L, Yang H, Hu Y (2012) Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos Sci Technol 72:737–743

    Article  CAS  Google Scholar 

  13. Bai L, Li Z, Zhao S, Zheng J (2018) Covalent functionalization of carbon nanotubes with hydroxyl-terminated polydimethylsiloxane to enhance filler dispersion, interfacial adhesion and performance of poly(methylphenylsiloxane) composites. Compos Sci Technol 165:274–281

    Article  CAS  Google Scholar 

  14. Ryu J, Han M (2014) Improvement of the mechanical and electrical properties of polyamide 6 nanocomposites by non-covalent functionalization of multi-walled carbon nanotubes. Compos Sci Technol 102:169–175

    Article  CAS  Google Scholar 

  15. Fujigaya T, Nakashima N (2015) Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater 16:024802

    Article  Google Scholar 

  16. Maciejewska BM, Jasiurkowska-Delaporte M, Vasylenko AI, Kozio KK, Jurga S (2014) Experimental and theoretical studies on the mechanism for chemical oxidation of multiwalled carbon nanotubes. RSC Adv 4:28826–28831

    Article  CAS  Google Scholar 

  17. Samy MM, Mohamed MG, Kuo S-W (2020) Pyrene-functionalized tetraphenylethylene polybenzoxazine for dispersing single-walled carbon nanotubes and energy storage. Compos Sci Technol 199:108360

    Article  CAS  Google Scholar 

  18. Choi EY, Roh SC, Kim CK (2014) Noncovalent functionalization of multi-walled carbon nanotubes with pyrene-linked nylon66 for high performance nylon66/multi-walled carbon nanotube composites. Carbon 7:160–168

    Article  Google Scholar 

  19. Kim KT, Jo WH (2010) Noncovalent functionalization of multiwalled carbon nanotubes using graft copolymer with naphthalene and its application as a reinforcing filler for poly(styrene-co-acrylonitrile). Polym Chem 48:4184–4191

    Article  CAS  Google Scholar 

  20. Kim KT, Jo WH (2011) Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for nylon66/multi-walled carbon nanotube composites. Carbon 49:819–826

    Article  CAS  Google Scholar 

  21. Li Z, Wang L, Li Y, Feng Y, Feng W (2019) Carbon-based functional nanomaterials: preparation, properties and applications. Compos Sci Technol 179:10–40

    Article  CAS  Google Scholar 

  22. Zhou Y, Fang Y, Ramasamy RP (2019) Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 19:392

    Article  Google Scholar 

  23. Bhattacharya M (2016) Polymer nanocomposites: a comparison between carbon nanotubes, graphene, and clay as nanofillers. Mater 9:262

    Article  Google Scholar 

  24. Kokil A, Saito T, Depolo W, Elkins CL, Wilkes GL, Long TE (2011) Introduction of multiple hydrogen bonding for enhanced mechanical performance of polymer-carbon nanotube composites. J Macromol Sci Pure Appl Chem 48:1016–1021

    Article  CAS  Google Scholar 

  25. Yang L, Tan X, Wang Z, Zhang X (2015) Supramolecular polymers: historical development, preparation, characterization, and functions. Chem Rev 115:7196–7239

    Article  CAS  Google Scholar 

  26. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K (2016) Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev 116:13752–13990

    Article  CAS  Google Scholar 

  27. Wang S, Guo H, Wang X, Wang Q, Li J, Wang X (2014) Self-assembled multiwalled carbon nanotube films assisted by ureidopyrimidinone-based multiple hydrogen bonds. Langmuir 30:12923–12931

    Article  CAS  Google Scholar 

  28. Pochorovski I, Wang H, Feldblyum JI, Zhang X, Antaris AL, Bao Z (2015) H-bonded supramolecular polymer for the selective dispersion and subsequent release of large-diameter semiconducting single-walled carbon nanotubes. J Am Chem Soc 137:4328–4331

    Article  CAS  Google Scholar 

  29. Wang Q, Wang S, Shang J, Qiu S, Zhang W, Wu X, Li J, Chen W, Wang X (2017) Enhanced electronic communication and electrochemical sensitivity benefiting from the cooperation of quadruple hydrogen bonding and ππ interactions in graphene/multi-walled carbon nanotube hybrids. ACS Appl Mater Interf 9:6255–6264

    Article  CAS  Google Scholar 

  30. Lin F, Wang R, Liu L, Li B, Ouyang LW, Liu WJ (2017) Enhanced intermolecular forces in supramolecular polymer nanocomposites. Exp Polym Lett 11:690–703

    Article  CAS  Google Scholar 

  31. Zhang Y, Tian W, Liu L, Cheng W, Wang W, Liew KM, Wang B, Hu Y (2019) Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem Eng J 372:1077–1090

    Article  CAS  Google Scholar 

  32. De Menezes BRC, Ferreira FV, Silva BC, Simonetti EAN, Bastos TM, Cividanes LS, Thim GP (2018) Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites. J Mater Sci 53:14311–14327

    Article  Google Scholar 

  33. Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, Zaharinie T (2017) Badarudin A (2017) A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids. J Colloid Interface Sci 504:115–123

    Article  CAS  Google Scholar 

  34. Li X, Zhao Z, Wang Y, Yan H, Zhang X (2017) Xu B (2017) Highly efficient flame retardant, flexible, and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide. Chem Eng J 324:237–250

    Article  CAS  Google Scholar 

  35. Doorn SK, O’connell MJ, Zheng L, Zhu YT, Huang S, Liu J (2005) Raman spectral imaging of a carbon nanotube intramolecular junction. Phys Rev Lett 94:016802

    Article  Google Scholar 

  36. Zhang X, Zhang J, Quan J, Wang N, Zhu Y (2016) Surface-enhanced raman scattering activities of carbon nanotubes decorated with silver nanoparticles. Analyst 141:5527–5534

    Article  CAS  Google Scholar 

  37. Vecera P, Chacón-Torres JC, Pichler T, Reich S, Soni HR, Görling A, Edelthalhammer K, Peterlik H, Hauke F, Hirsch A (2017) Precise determination of graphene functionalization by in situ raman spectroscopy. Nat Commun 8:15192

    Article  CAS  Google Scholar 

  38. Jang PG, Suh KS, Park M, Kim JK, Kim WN (2007) Yoon HG (2007) Electrical behavior of polyurethane composites with acid treatment-induced damage to multiwalled carbon nanotubes. J Appl Polym Sci 106:110–116

    Article  CAS  Google Scholar 

  39. Murphy H, Papakonstantinou P, Okpalugo TI (2006) Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. J Vac Sci Technol 24:715–720

    Article  CAS  Google Scholar 

  40. Sahebian S, Zebarjad SM, Vahdati KJ, Lazzeri AA (2015) Study on the dependence of structure of multi-walled carbon nanotubes on acid treatment. J Nanostruct Chem 5:287–293

    Article  CAS  Google Scholar 

  41. Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbroth DH (2011) Surface and structural characterization of multi-walled carbon nanotube following different oxidative treatments. Carbon 49:24–36

    Article  CAS  Google Scholar 

  42. Hoseini AHA, Arjmand M, Sundararaj U, Trifkovic M (2017) Significance of interfacial interaction and agglomerates on electrical properties of polymer-carbon nanotube nanocomposites. Mater Des 125:126–134

    Article  CAS  Google Scholar 

  43. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5:2131–2134

    Article  CAS  Google Scholar 

  44. Kim H, Kim K, Lee CY (2004) Joo J (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84:589–591

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the KRICT Core Project, the R&D Convergence Program of the National Research Council of Science and Technology of the Republic of Korea, and the Creative Materials Discovery Program through the National Research Foundation of the Republic of Korea(NRF) funded by Ministry of Science and ICT(2020M3D1A1110505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mijeong Han.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Kang, Y.H., Lim, HW. et al. Highly conductive and mechanically robust multiwalled carbon nanotube-polyamide nanocomposites via noncovalent functionalization. J Mater Sci 57, 4197–4209 (2022). https://doi.org/10.1007/s10853-022-06869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06869-7

Navigation