Skip to main content
Log in

Phase field model simulations of hydrogel dynamics under chemical stimulation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Two decades ago, it has been observed experimentally that hydrogels immersed in a bath solution swells or shrinks under external stimulations (Ric̆ka et al., Macromolecules 17:2916–2921, 1984). Recently, this fact has received renewed interest, since understanding the precise mechanisms underlying that kind of behavior has the potential to tailor most sensitive drug delivery systems based on hydrogels (Segalman and Witkowski, Mater Sci Eng C 2:243–249, 1995). Here we contribute to a precise understanding of the mechanisms responsible for the hydrogels’ swelling kinetics as well as dynamics by proposing for the first time a model approach that can resolve the inherent short-range correlation effects along the hydrogel–solution interface jointly with the long-range ionic transport fields. To that end, we investigate the swelling dynamics of hydrogels, which is a moving boundary problem, by a phase field model, which couples the Nernst–Planck equation for the concentration of mobile ions, Poisson equation for the electric potential, mechanical equation for the displacement, and an equation for the phase field variable. Simulation for two-dimensional case reveals that under the chemical stimulation, the hydrogel will swell or shrink if the concentration of mobile ions inside bath solution decreases or increases. This is in agreement with the experimental results qualitatively and validates our new model approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  2. Kim SJ, Park SJ, Kim SI (2004) Properties of smart hydrogels composed of polyacrylic acid/poly(vinyl sulfonic acid) responsive to external stimuli. Smart Mater Struct 13:317–322

    Article  CAS  Google Scholar 

  3. Hirotsu S, Hirokawa Y, Tanaka T (1987) Volume-phase transitions of ionized N-isopropylacrylamide gels. J Chem Phys 87:1392–1395

    Article  CAS  Google Scholar 

  4. Kuhn W, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165:514–516

    Article  CAS  Google Scholar 

  5. De SK, Aluru NR, Johnson B, Crone WC, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11:544–555

    Article  CAS  Google Scholar 

  6. Ohmine I, Tanaka T (1982) Salt effects on the phase transition of ionic gels. J Chem Phys 77:5725–5729

    Article  CAS  Google Scholar 

  7. Tanaka T, Nishio I, Sun ST, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469

    Article  CAS  Google Scholar 

  8. Sun S, Mak Arthur FT (2001) The dynamical response of a hydrogel fiber to electrochemical stimulation. J Polym Sci Polym Phys 39:236–246

    Article  CAS  Google Scholar 

  9. Zourob M, Ong KG, Zeng K, Mouffouk F, Grimes CA (2007) A wireless magnetoelastic biosensor for the direct detection of organophosphorus pesticides. Analyst 132:338–343

    Article  CAS  Google Scholar 

  10. Khaled A, George KK, Amarjeet SB (2006) Photo-responsive hydrogel for controlling flow on a microfluidic chip. In: Proc. SPIE, p 6343

  11. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345

    Article  CAS  Google Scholar 

  12. Houk J, Whitesides GM (1987) Structure–reactivity relations for thiol–disulfide interchange. J Am Chem Soc 109(22):6825–6836

    Article  CAS  Google Scholar 

  13. Chatterjee AN, Yu Q, Moore JS, Aluru NR (2003) Mathematical modeling and simulation of dissolvable hydrogels. J Aerosp Eng 16:55–64

    Article  Google Scholar 

  14. Galaev IY, Mattiasson B (1999) Smart polymers and what they could do in biotechnology and medicine. Trends Biotech 17:335–340

    Article  CAS  Google Scholar 

  15. Luo XL, Xu JJ, Du Y, Chen HY (2004) A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Anal Biochem 334:284–289

    Article  CAS  Google Scholar 

  16. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  Google Scholar 

  17. Mao L, Hu Y, Piao Y, Chen X, Xian W, Piao D (2005) Structure and character of artificial muscle model constructed from fibrous hydrogel. Curr Appl Phys 5:429–428

    Article  Google Scholar 

  18. Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56:199–210

    Article  CAS  Google Scholar 

  19. Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161–1171

    Article  CAS  Google Scholar 

  20. Nishizawa K, Shirose T, Itoh O (1981) Disposable diaper. United States Patent 4790836

  21. Zrínyi M, Szilágyi A, Filipcsei G, Fehér J, Szalma J, Móczár G (2001) Smart gel-glass based on the responsive properties of polymer gels. Polym Adv Technol 12:501–505

    Article  Google Scholar 

  22. Wu S, Li H, Chen JP, Lam KY (2004) Modeling investigation of hydrogel volume transition. Macromol Theory Simul 13:13–29

    Article  Google Scholar 

  23. Wallmersperger T, Wittel FK, Kröplin B (2006) Multiscale modeling of polyelectrolyte gels. Smart structures and materials 2006: Electroactive polymer actuators and devices (EAPAD). In: Proceedings of SPIE, vol 6168, 61681H-1

  24. Saunders JR, Abu-Salih S, Khaleque T, Hanula S, Moussa W (2008) Modeling theories of intelligent hydrogel polymers. J Comput Theor Nanosci 5:1942–1960

    Article  CAS  Google Scholar 

  25. Kenkare NR, Hall CK, Khan SA (2000) Theory and simulation of the swelling of polymer gels. J Chem Phys 113:404–418

    Article  CAS  Google Scholar 

  26. Gilra N, Panagiotopoulos AZ, Cohen C (2001) Monte Carlo simulations of polymer network deformation. Macromolecules 34:6090–6096

    Article  CAS  Google Scholar 

  27. Schneider S, Linse P (2003) Monte Carlo simulation of defect-free cross-linked polyelectrolyte gels. J Phys Chem B 107:8030–8040

    Article  CAS  Google Scholar 

  28. Aydt EM, Hentschke R (2000) Swelling of a model network: a Gibbs-ensemble molecular dynamics study. J Chem Phys 112:5480–5487

    Article  CAS  Google Scholar 

  29. Lu ZY, Hentschke R (2002) Swelling of model polymer networks with different cross-link densities: a computer simulation study. Phys Rev E 66:041803–041810

    Article  Google Scholar 

  30. Nick B, Suter UW (2001) Solubility of water in polymers—atomistic simulations. Comput Theor Polymer Sci 11:49–55

    Article  CAS  Google Scholar 

  31. Deshmukh S, Mooney DA, McDermott T, Kulkarni S, Don MacElro JM (2009) Molecular modeling of thermo-responsive hydrogels: observation of lower critical solution temperature. Soft Matter 5:1514–1521

    Article  CAS  Google Scholar 

  32. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  33. Kovac J (1977) Modified Gaussian model for rubber elasticity. Macromolecules 11:362–365

    Article  Google Scholar 

  34. Anthony JG, William HB (1982) The freely jointed chain in expanded form. J Chem Phys 79:2411–2418

    Google Scholar 

  35. Erman B, Flory PJ (1986) Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromolecules 19:2342

    Article  CAS  Google Scholar 

  36. English AE, Mafé S, Manzanares J, Yu X, Grosberg AY (1996) Equilibrium swelling properties of polyampholytic hydrogels. J Chem Phys 104:8713–8720

    Article  CAS  Google Scholar 

  37. Maurer G, Prausnitz JM (1996) Thermodynamics of phase equilibrium for systems containing gels. Fluid Phase Equilib 115:113–133

    Article  CAS  Google Scholar 

  38. Okay O, Sariisik SB (2000) Swelling behavior of poly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: theory versus experiments. Eur Polym J 36:393–399

    Article  CAS  Google Scholar 

  39. Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113:245–259

    Article  CAS  Google Scholar 

  40. Huyghe JM, Janssen JD (1997) Quadriphasic mechanics of swelling incompressible porous media. Int J Eng Sci 35:793–802

    Article  Google Scholar 

  41. Sun DN, Gu WY, Guo XE, Lai WM, Mow VC (1999) A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int J Numer Methods Eng 45:1375–1402

    Article  Google Scholar 

  42. Hon YC, Lu MW, Xue WM, Zhou X (1999) A new formulation and computation of the triphasic model for mechano-electrochemical mixtures. Comput Mech 24:155–165

    Article  Google Scholar 

  43. Zhou X, Hon YC, Sun S, Mak AFT (2002) Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Smart Mater Struct 11:459–467

    Article  CAS  Google Scholar 

  44. Wolgemuth CW, Mogilner A, Oster G (2004) The hydration dynamics of polyelectrolyte gels with applications to cell motility and drug delivery. Eur Biophys J 33:146–158

    Article  CAS  Google Scholar 

  45. Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media: theory, experiments and numerical applications. Springer, Berlin, pp 3–86

    Google Scholar 

  46. Acartürk AY (2009) Simulation of charged hydrated porous materials. ISBN 3-937399-18-6, D 93. Dissertation, Universität Stuttgart

  47. Doi M, Matsumoto M, Hirose Y (1992) Deformation of ionic polymer gels by electric fields. Macromolecules 25:5504–5511

    Article  CAS  Google Scholar 

  48. Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML (1990) Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J Chem Phys 93:4462–4472

    Article  CAS  Google Scholar 

  49. De SK, Aluru NR, Johnson B (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectron Syst 11:544–555

    Article  CAS  Google Scholar 

  50. De SK, Aluru NR (2004) A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mech Mater 36:395–410

    Article  Google Scholar 

  51. Chatterjee AN, Yu Q, Moore JS, Aluru NR (2003) Mathematical modeling and simulation of dissolvable hydrogels. J Aerosp Eng 16:55–64

    Article  Google Scholar 

  52. Segalman DJ, Witkowski WR, Adolf DB, Shahinpoor M (1992) Theory and application of electrically controlled polymeric gels. Smart Mater Struct 1:95–100

    Article  CAS  Google Scholar 

  53. Segalman DJ, Witkowski WR (1995) Two-dimensional finite element analysis of a polymer gel drug delivery system. Mater Sci Eng C 2:243–249

    Article  Google Scholar 

  54. Brock D, Lee W, Segalman DJ, Witkowski WR (1994) A dynamic model of a linear actuator based on polymer hydrogel. J Intell Mater Syst Struct 5:764–771

    Article  CAS  Google Scholar 

  55. Li H, Ng TY, Yew YK, Lam KY (2005) Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. Biomacromolecules 6:109–120

    Article  CAS  Google Scholar 

  56. Li H, Chen J, Lam KY (2007) Transient simulation of electric-sensitive hydrogels. Biosens Bioelectron 22:1633–1641

    Article  CAS  Google Scholar 

  57. Wallmersperger T, Kröplin B, Gülch RW (2004) Coupled chemo-electro-mechanical formulation for ionic polymer gels—numerical and experimental investigations. Mech Mater 36:411–420

    Article  Google Scholar 

  58. Ballhause D, Wallmersperger T (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation. Smart Mater Struct 17:045011

    Article  Google Scholar 

  59. Wallmersperger T, Ballhause D (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: II. Electrical stimulation. Smart Mater Struct 17:045012

    Article  Google Scholar 

  60. Emmerich H (2003) The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models. Springer, New York, ISBN-10: 3540004165

    Google Scholar 

  61. Wheeler AA, Boettinger WJ, McFadden GB (1992) Phase-field model for isothermal phase transitions in binary alloys. Phys Rev A 45:7427–7439

    Google Scholar 

  62. Ric̆ka J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the donnan theory. Macromolecules 17:2916–2921

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG SPP 1259: Intelligente Hydrogele, modeling and simulation of hydrogel swelling under strong non-equilibrium conditions using the phase-field and phase-field crystal methods. Daming Li is also supported by National Sciences Foundation of China (Young Scholars; Grant No. 10701056) and Chinese Ministry of Education (No. 108056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Yang, H. & Emmerich, H. Phase field model simulations of hydrogel dynamics under chemical stimulation. Colloid Polym Sci 289, 513–521 (2011). https://doi.org/10.1007/s00396-011-2381-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2381-4

Keywords

Navigation