Skip to main content
Log in

Large-scale synthesis of silver nanowires and platinum nanotubes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Silver nanowires have been synthesized by ethylene glycol reduction of silver nitrate with the assistance of polyvinyl pyrrolidone and sodium sulfide in a large scale. By adjusting the reaction temperature and Na2S content, silver nanowires with lengths up to 3−4 μm can be achieved in high yield. Scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected areas electron diffraction (SAED), and X-ray diffraction (XRD) have been employed to characterize silver nanowires. Platinum nanotubes with length about 3 μm can be prepared using as-prepared silver nanowires as sacrificial templates. Platinum nanotubes were characterized by TEM, SAED, and HRTEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  Google Scholar 

  2. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  3. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  4. Ni K, Chen L, Lu G (2008) Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction. Electrochem Commun 10:1027–1030

    Article  CAS  Google Scholar 

  5. Herricks T, Chen J, Xia Y (2004) Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett 4:2367–2371

    Article  CAS  Google Scholar 

  6. Sun B, Jiang X, Dai S, Du Z (2009) Single-crystal silver nanowires: preparation and surface-enhanced raman scattering (SERS) property. Mater Lett 63:2570–2573

    Article  CAS  Google Scholar 

  7. Jin R, Charles Cao Y, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  CAS  Google Scholar 

  8. Sun X, Dong S, Wang E (2005) High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir 21:4710–4712

    Article  CAS  Google Scholar 

  9. Bakshi MS, Possmayer F, Petersen NO (2008) Aqueous-phase room-temperature synthesis of gold nanoribbons: soft template effect of a gemini surfactant. J Phys Chem C 112:8259–8265

    Article  CAS  Google Scholar 

  10. Lu J, Yang L, Xie A, Shen Y (2009) DNA-templated photo-induced silver nanowires: fabrication and use in detection of relative humidity. Biophys Chem 145:91–97

    Article  CAS  Google Scholar 

  11. Bai J, Qin Y, Jiang C, Qi L (2007) Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns. Chem Mater 19:3367–3369

    Article  CAS  Google Scholar 

  12. Du J, Han B, Liu Z, Liu Y, Kang DJ (2007) Control synthesis of silver nanosheets, chainlike sheets, and microwires via a simple solvent-thermal method. Cryst Growth Des 7:900–904

    Article  CAS  Google Scholar 

  13. Xu J, Hu J, Peng C, Liu H, Hu Y (2006) A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. J Colloid Interf Sci 298:689–693

    Article  CAS  Google Scholar 

  14. Ding X, Xu R, Liu H, Shi W, Liu S, Li Y (2008) Hyperbranched polymer-assisted hydrothermal in situ synthesis of submicrometer silver tubes. Cryst Growth Des 8:2982–2985

    Article  CAS  Google Scholar 

  15. Im SH, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed 44:2154–2157

    Article  CAS  Google Scholar 

  16. Wang Z, Chen M, Wu L (2008) Synthesis of monodisperse hollow silver spheres using phase-transformable emulsions as templates. Chem Mater 20:3251–3253

    Article  CAS  Google Scholar 

  17. Sarkar A, Kapoor S, Mukherjee T (2005) Synthesis of silver nanoprisms in formamide. J Colloid Interf Sci 287:496–500

    Article  CAS  Google Scholar 

  18. Chaney SB, Shanmukh S, Dluhy RA, Zhao Y-P (2005) Aligned silver nanorod arrays produce high sensitivity surface-enhanced raman spectroscopy substrates. Appl Phys Lett 87:031908

    Article  Google Scholar 

  19. Li Z, Gu A, Zhou Q (2009) Growth of spindle-shaped silver nanoparticles in SDS solutions. Cryst Res Technol 44:841–844

    Article  CAS  Google Scholar 

  20. Li Z, Gu A (2009) Growth of spindle-shaped gold nanoparticles in cetyltrimethylammonium bromide solutions. Micro Nano Lett 4:142–147

    Article  CAS  Google Scholar 

  21. Rashid MH, Mandal TK (2007) Synthesis and catalytic application of nanostructured silver dendrites. J Phys Chem C 111:16750–16760

    Article  CAS  Google Scholar 

  22. Zhao K, Chang Q, Chen X, Zhang B, Liu J (2009) Synthesis and application of DNA-templated silver nanowires for ammonia gas sensing. Mat Sci Eng C 29:1191–1195

    Article  Google Scholar 

  23. Hu Z, Wang Y, Xie Y, Yang Y, Zhang Z, Wu H (2010) Ag nanowires and its application as electrode materials in electrochemical capacitor. J Appl Electrochem 40:341–344

    Article  CAS  Google Scholar 

  24. Li Z, Song H, Yang Z, Jin Y, Jiao Z, Zhang Y, Gao Y, Yu Z, Li W, Gong M, Sun X (2009) Synthesis of silver nanowires via electroplating technology and its surface enhanced raman scattering effect. Appl Surf Sci 255:8571–8574

    Article  CAS  Google Scholar 

  25. Hong BH, Bae SC, Lee C-W, Jeong S, Kim KS (2001) Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294:348–351

    Article  CAS  Google Scholar 

  26. Sauer G, Brehm G, Schneider S, Nielsch K, Wehrspohn RB, Choi J, Hofmeister H, Gosele U (2002) Highly ordered monocrystalline silver nanowire arrays. J Appl Phys 91:3243–3247

    Article  CAS  Google Scholar 

  27. Choi J, Sauer G, Nielsch K, Wehrspohn RB, Gosele U (2003) Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater 15:776–779

    Article  CAS  Google Scholar 

  28. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  CAS  Google Scholar 

  29. Sun Y, Gates B, Mayers B, Xia Y (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168

    Article  CAS  Google Scholar 

  30. Zhang D, Qi L, Ma J, Cheng H (2001) Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem Mater 13:2753–2755

    Article  CAS  Google Scholar 

  31. Bhattacharyya S, Saha SK, Chakravorty D (2000) Silver nanowires grown in the pores of a silica gel. Appl Phys Lett 77:3770–3772

    Article  CAS  Google Scholar 

  32. Behrens S, Wu J, Habicht W, Unger E (2004) Silver nanoparticle and nanowire formation by microtubule templates. Chem Mater 16:3085–3090

    Article  CAS  Google Scholar 

  33. Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3:667–669

    Article  CAS  Google Scholar 

  34. Xiao C, Yang H, Shen C, Li Z, Zhang H, Liu F, Yang T, Chen S, Gao H (2005) Controlled growth of large-scale silver nanowires. Chinese Phys 14:2269–2275

    Article  CAS  Google Scholar 

  35. Zhang D, Qi L, Yang J, Ma J, Cheng H, Huang L (2004) Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chem Mater 16:872–876

    Article  CAS  Google Scholar 

  36. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  37. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  38. Jiu J, Murai K, Kim D, Kim K, Suganuma K (2009) Preparation of Ag nanorods with high yield by polyol process. Mater Chem Phys 114:333–338

    Article  CAS  Google Scholar 

  39. Siekkinen AR, McLellan JM, Chen J, Xia Y (2006) Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem Phys Lett 432:491–496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Scientific Foundation for Universities in Jiangsu Province (08KJB150007), the Foundation of Jiangsu Key Laboratory of Precious Metals Chemistry and Engineering (SYGK0712), and the Natural Scientific Foundation of Jiangsu Teachers University of Technology (KYY08023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongchun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Gu, A., Guan, M. et al. Large-scale synthesis of silver nanowires and platinum nanotubes. Colloid Polym Sci 288, 1185–1191 (2010). https://doi.org/10.1007/s00396-010-2249-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2249-z

Keywords

Navigation