Skip to main content
Log in

Do additives shift the LCST of poly (N-isopropylacrylamide) by solvent quality changes or by direct interactions?

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The phase transition of thermoresponsive poly(N-isopropylacrylamide) is studied under the influence of additives considered as model substances for drugs. A series of aromatic compounds with similar structures, mainly benzaldehydes, is chosen. The lower critical solution temperature (LCST) is determined by differential scanning calorimetry and 1H-NMR. All additives cause a down shift of the LCST, which depends on additive molecular structure and concentration. Since the LCST shifts are not correlated to hydrophobicity or solubility of the additive, the detailed substitution pattern is discussed as the controlling factor. The question whether LCST shifts can be explained by either the additives affecting the solvent quality or by specific interactions of additives with the polymer is addressed by LCST determination in dependence on polymer concentration. Though both factors are relevant, specific additive-polymer interactions are shown to play a major role in controlling the LCST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schild HG (1992) Poly (N-Isopropylacrylamide)—experiment, theory, and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  2. Kuckling D (2009) Responsive hydrogel layers-from synthesis to applications. Colloid Polym Sci 287:881–891

    Article  CAS  Google Scholar 

  3. Sukhishvili SA (2005) Responsive polymer films and capsules via layer-by-layer assembly. Curr Opin Colloid Interface Sci 10:37–44

    Article  CAS  Google Scholar 

  4. Glinel K, Dejugnat C, Prevot M, Schöler B, Schönhoff M, Klitzing RV (2007) Responsive polyelectrolyte multilayers. Colloids Surf, A Physicochem Eng Asp 303:3–13

    Article  CAS  Google Scholar 

  5. Rusu M, Kuckling D, Möhwald H, Schönhoff M (2006) Adsorption of novel thermosensitive graftcopolymers: Core-shell particles prepared by polyelectrolyte multilayer self-assembly. J Colloid Interf Sci 298:124–131

    Article  CAS  Google Scholar 

  6. Ballauff M, Lu Y (2007) "Smart" nanoparticles: Preparation, characterization, and application. Polym Bull 48:1815–1823

    CAS  Google Scholar 

  7. Liu RX, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287:627–643

    Article  CAS  Google Scholar 

  8. Zhang JX, Qiu LY, Jin Y, Zhu KJ (2006) Thermally responsive polymeric micelles self-assembled by amphiphilic polyphosphazene with poly(N-isopropylacrylamide) and ethyl glycinate as side groups: Poylmer synthesis, characterization and in vitro drug release study. J Biomed Mater Res Part A 76:773–780

    Article  CAS  Google Scholar 

  9. Wang Q, Zhao Y, Yang Y, Xu H, Yang X (2007) Thermosensitive phase behavior and drug release of in situ gelable poly(N-isopropylacrylamide-co-acrylamide) microgels. Colloid Polym Sci 285:515–521

    Article  CAS  Google Scholar 

  10. Lynch I, Dawson KA (2004) Release of model compounds from "Plum-Pudding"-type gels composed of microgel particles randomly dispersed in a gel matrix. J Phys Chem B 108:10893–10898

    Article  CAS  Google Scholar 

  11. Dhara D, Chatterji PR (2000) Phase transition in linear and cross-linked poly(N-isopropylacrylamide) in water: effect of various types of additives. J M S Rev Macromol Chem Phys 40:51–68

    Google Scholar 

  12. Kosik K, Wilk E, Geissler E, László K (2007) Distribution of phenols in thermoresponsive hydrogels. Macromolecules 40:2141–2147

    Article  CAS  Google Scholar 

  13. Coughlan DC, Quilty FP, Corrigan OI (2004) Effect on drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(Nisopropylacrylamide) hydrogels. J Control Release 98:97–114

    Article  CAS  Google Scholar 

  14. Coughlan DC, Corrigan OI (2006) Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int J Pharm 313:163–174

    Article  CAS  Google Scholar 

  15. Schild HG, Tirrell DA (1990) Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J Phys Chem 94:4352–4356

    Article  CAS  Google Scholar 

  16. Winnik FM, Ringsdorf H, Venzmer J (1990) Methanol- water as a co-nonsolvent system for poly(Nisopropylacrylamide). Macromolecules 23:2415–2416

    Article  CAS  Google Scholar 

  17. Eliassaf J (1978) Aqueous solutions of poly(N-isopropylacrylamide). J Appl Polym Sci 22:973–874

    Article  Google Scholar 

  18. Schild HG, Tirrell DA (1991) Interaction of poly(N-isopropylacrylymide) with sodium n-alkyl sulfates in aqueous solution. Langmuir 7:665–671

    Article  CAS  Google Scholar 

  19. Dhara D, Chatterji PR (1999) Effect of hydrotropes on the volume phase transition in poly(Nisopropylacrylamide) hydrogel. Langmuir 15:930–935

    Article  CAS  Google Scholar 

  20. Liu HY, Zhu XX (1999) Lower critical solution temperatures of N-substituted acrylamide copolymers in aqueous solutions. Polymer 40:6985–6990

    Article  CAS  Google Scholar 

  21. Durme KV, Rahier H, Mele BV (2005) Influence of additives on the thermoresponsive behavior of polymers in aqueous solution. Macromolecules 38:10155–10163

    Article  CAS  Google Scholar 

  22. Schönhoff M, Larsson A, Welzel PB, Kuckling D (2002) Thermoreversible polymers adsorbed to colloidal silica: a H-1 NMR and DSC study of the phase transition in confined geometry. J Phys Chem B 106:7800–7808

    Article  CAS  Google Scholar 

  23. Larsson A, Kuckling D, Schönhoff M (2001) 1H NMR of thermoreversible polymers in solution and at interfaces: the influence of charged groups on the phase transition. Coll Surf A 190:185–192

    Article  CAS  Google Scholar 

  24. Hanyková L, Labuta J, Spěvaček J (2006) NMR study of temperature-induced phase separation and polymer–solvent interactions in poly(vinyl methyl ether)/D2O/ethanol solutions. Polymer 47:6107–6116

    Article  CAS  Google Scholar 

  25. Andersson M, Maunu SL (2006) Volume phase transition and structure of poly(N-isopropylacrylamide) microgels studied with 1H-NMR spectroscopy in D2O. Colloid Polym Sci 285:293–303

    Article  CAS  Google Scholar 

  26. Spěváček J (2005) Phase separation in aqueous polymer solutions as studied by NMR methods. Macromol Symp 222:1–13

    Article  CAS  Google Scholar 

  27. Rusu M, Wohlrab S, Kuckling D, Möhwald H, Schönhoff M (2006) Coil-to-globule transition of PNIPAM graft copolymers with charged side chains: a H-1 and H-2 NMR and spin relaxation study. Macromolecules 39:7358–7363

    Article  CAS  Google Scholar 

  28. Spevacek J (2009) NMR investigations of phase transition in aqueous polymer solutions and gels. Curr Opin Colloid Interface Sci 14:184–191

    Article  CAS  Google Scholar 

  29. Yushmanov PV, Furó I, Iliopoulos I (2006) Kinetics of Demixing and Remixing Transitions in Aqueous Solutions of Poly(N-isopropylacrylamide): A Temperature-Jump 1H NMR Study. Macromolecular Chem Phys 2006:1972–1979

    Article  CAS  Google Scholar 

  30. Zeng F, Tong Z, Feng HQ (1997) Nmr investigation of phase separation in poly(N-isopropyl acrylamide)/water solutions. Polymer 38:5539–5544

    Article  CAS  Google Scholar 

  31. Tokuhiro T, Amiya T, Mamada A, Tanaka T (1991) NMR study of poly(N-isopropylacrylymide) gels near phase transition. Macromolecules 24:2936–2943

    Article  CAS  Google Scholar 

  32. Otake K, Inomata H, Konno M, Saito S (1990) Thermal analysis of the volume phase transition with nisopropylacrylamide gels. Macromolecules 23:283–289

    Article  CAS  Google Scholar 

  33. Wang X, Qiu X, Wu C (1998) Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules 31:2972–2976

    Article  CAS  Google Scholar 

  34. Winnik FM (1990) Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST. Macromolecules 23:233–242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Schönhoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure A

NMR spectra of 1 wt% PNiPAm in D2O at three different temperatures: 24°C (black), 33°C (red), and 40°C (blue). The assignment of the peaks is given by the numbers in the insert (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, C., Schönhoff, M. Do additives shift the LCST of poly (N-isopropylacrylamide) by solvent quality changes or by direct interactions?. Colloid Polym Sci 287, 1369–1376 (2009). https://doi.org/10.1007/s00396-009-2103-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2103-3

Keywords

Navigation