Skip to main content
Log in

Slow salt-induced aggregation of citrate-covered silver particles in aqueous solutions of cellulose derivatives

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, the salt-induced aggregation of bare and polymer-covered silver particles has been studied with the aid of light scattering and UV-visible spectroscopy. Light scattering on a suspension of bare silver particles at a low salt concentration shows that the cluster fractal dimension d f changes from 1.6 to 2 in the course of the aggregation process, whereas no restructuring of the clusters is observed at a higher salinity where d f ≈ 1.6. The growth of the clusters over time can be described by a power law R h ∝ t α, where R h is the apparent hydrodynamic radius. The UV-visible experiments revealed that increasing the size of the bare silver particles lead to a significant broadening and red-shift of the absorbance band, whereas for salt-induced growth of Ag clusters, a blue-shift and broadening was observed. Addition of salt to a suspension of silver particles and hydroxyethylcellulose divulged a slower broadening of the surface plasmon peak than without polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  2. Hutter E, Fendler JH (2004) Adv Mater 16:1685

    Article  CAS  Google Scholar 

  3. Almeida VR, Barrios CA, Panepucci RR, Lipson M (2005) Nature 431:1081

    Article  CAS  Google Scholar 

  4. Mie G (1908) Ann Phys 25:377

    Article  CAS  Google Scholar 

  5. Enüstün BV, Turkevich J (1963) J Am Chem Soc 85:3317

    Article  Google Scholar 

  6. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, New York

    Google Scholar 

  7. Israelachvili J (1991) Intermolecular and surface forces. Academic, London

    Google Scholar 

  8. Meakin P (1983) Phys Rev Lett 51:1119

    Article  Google Scholar 

  9. Kolb M, Botet R, Jullien R (1983) Phys Rev Lett 51:1123

    Article  Google Scholar 

  10. Kolb M, Jullien R (1984) J Physique Lett 45:L977

    Article  Google Scholar 

  11. Jullien R, Botet R (1987) Aggregation and fractal aggregates. World Scientific, Singapore

    Google Scholar 

  12. Avnir D (ed) (1989) The fractal approach to heterogeneous chemistry: surfaces, colloids, polymers. Wiley, Chichester

    Google Scholar 

  13. Von Smoluchowski M (1917) Z Phys Chem 92:129

    Google Scholar 

  14. Schmitt A, Fernández-Barbero A, Cabrerizo-Vílchez MA, Hidalgo-Álvarez R (2000) J Phys Condens Matter 12:A281

    Article  CAS  Google Scholar 

  15. van Dongen PGJ, Ernst MH (1985) Phys Rev Lett 54:1396

    Article  Google Scholar 

  16. van Dongen PGJ, Ernst MH (1988) J Stat Phys 50:295

    Article  Google Scholar 

  17. Ball RC, Weitz TA, Witten TA, Leyvraz F (1987) Phys Rev E 58:274

    Google Scholar 

  18. Broide ML, Cohen RJ (1992) J Colloid Interface Sci 153:493

    Article  CAS  Google Scholar 

  19. Weitz DA, Huang JS, Lin MY, Sung J (1984) Phys Rev Lett 53:1657

    Article  CAS  Google Scholar 

  20. Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416

    Article  CAS  Google Scholar 

  21. Meakin P, Vicsek T, Family F (1985) Phys Rev B 31:564

    Article  Google Scholar 

  22. Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, London

    Google Scholar 

  23. Ploehn HJ, Russel WB (1990) Adv Chem Eng 15:137

    Article  CAS  Google Scholar 

  24. Mulvaney P (1996) Langmuir 12:788

    Article  CAS  Google Scholar 

  25. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  26. Genzel L, Martin TP (1972) Phys Status Solidi B 51:91

    Article  CAS  Google Scholar 

  27. Noguez C (2005) Opt Mater 27:1204

    Article  Google Scholar 

  28. Noguez C (2007) J Phys Chem C 111:3806

    Article  CAS  Google Scholar 

  29. Kreibig U (1974) J Phys F Met Phys 4:999

    Article  CAS  Google Scholar 

  30. Silioc C, Maleki A, Zhu K, Kjøniksen A-L, Nyström B (2007) Biomacromolecules 8:719

    Article  CAS  Google Scholar 

  31. Beheshti N, Zhu K, Kjøniksen A-L, Nyström B (2008) Colloids Surf A 328:79

    Article  CAS  Google Scholar 

  32. Miyajima T, Kitsuki T, Kita K, Kamitani H, Yamaki K (1999) US Patent 5891450

  33. Beheshti N, Bu H, Zhu K, Kjøniksen A-L, Knudsen KD, Pamies R, Hernándes Cifre JG, de la Torre JG, Nyström B (2006) J Phys Chem B 110:6601

    Article  CAS  Google Scholar 

  34. Phillies GDJ, Richardson C, Quinlan CA, Ren SZ (1993) Macromolecules 26:6849

    Article  CAS  Google Scholar 

  35. Ngai KL, Phillies GDJ (1996) J Chem Phys 105:8385

    Article  CAS  Google Scholar 

  36. Kjøniksen A-L, Joabsson F, Thuresson K, Nyström B (1999) J Phys Chem B 103:9818

    Article  CAS  Google Scholar 

  37. Amirkhani M, Volden S, Zhu K, Glomm WR, Nyström B (2008) J Colloid Interface Sci 328:20

    Article  CAS  Google Scholar 

  38. Wilcoxon JP, Martin JE, Schaefer DW (1987) Phys Rev Lett 58:1051

    Article  CAS  Google Scholar 

  39. Aubert C, Cannell DS (1986) Phys Rev Lett 56:738

    Article  CAS  Google Scholar 

  40. Olivier BJ, Sorensen CM (1990) Phys Rev A 41:2093

    Article  CAS  Google Scholar 

  41. Asnaghi D, Carpineti M, Giglio M, Sozzi M (1992) Phys Rev A 45:1018

    Article  CAS  Google Scholar 

  42. Bolle G, Cametti C, Codastefano P, Tartaglia P (1987) Phys Rev A 35:837

    Article  CAS  Google Scholar 

  43. Burns JL, Yan Y, Jameson GJ, Biggs S (1997) Langmuir 13:6413

    Article  CAS  Google Scholar 

  44. Tirado-Miranda M, Scmitt A, Callejas-Fermándes J, Fernándes-Barbero A (2003) J Chem Phys 119:9251

    Article  CAS  Google Scholar 

  45. Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Nature 339:360

    Article  CAS  Google Scholar 

  46. Cohen Stuart MA, Waajen FHWH, Cosgrove T, Vincent B, Crowley TL (1984) Macromolecules 17:1825

    Article  Google Scholar 

  47. Witten TA, Pincus PA (1986) Macromolecules 19:2509

    Article  CAS  Google Scholar 

  48. Zhu PW, Napper DH (1994) Phys Rev E 50:1360

    Article  CAS  Google Scholar 

  49. Swenson J, Smalley MV, Hatharasinghe HLM (1998) Phys Rev Lett 81:5840

    Article  CAS  Google Scholar 

  50. Volpert E, Selb J, Candau F, Green N, Argillier JF, Audibert A (1998) Langmuir 14:1870

    Article  CAS  Google Scholar 

  51. Milner ST (1991) Science 251:905

    Article  CAS  Google Scholar 

  52. Lauten RA, Kjøniksen A-L, Nyström B (2001) Langmuir 17:924

    Article  CAS  Google Scholar 

  53. Heath JR (1989) Phys Rev B 40:9982

    Article  CAS  Google Scholar 

  54. Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi JR (2007) J Phys Chem C 111:14962

    Article  CAS  Google Scholar 

  55. Ghosh SK, Pal T (2007) Chem Rev 107:4797

    Article  CAS  Google Scholar 

  56. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668

    Article  CAS  Google Scholar 

  57. Henglein A, Giersig M (1999) J Phys Chem 103:9533

    CAS  Google Scholar 

  58. González AL, Noguez C (2007) Phys Status Solidi 4:4118

    Article  CAS  Google Scholar 

  59. Zhang JZ, Noguez C (2008) Plasmonics 3:127

    Article  CAS  Google Scholar 

  60. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) Nano Today 4:244

    Article  Google Scholar 

  61. Wilcoxon JP, Martin JE, Provencio P (2001) J Chem Phys 115:998

    Article  CAS  Google Scholar 

  62. Zhao LL, Kelly KL, Schatz GC (2003) J Phys Chem B 107:7343

    Article  CAS  Google Scholar 

  63. Aubouy M, Raphaël E (1998) Macromolecules 31:4357

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported from the Research Council of Norway within the FRINAT program, project number 177556/V30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Nyström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinh, L.T.T., Kjøniksen, AL., Zhu, K. et al. Slow salt-induced aggregation of citrate-covered silver particles in aqueous solutions of cellulose derivatives. Colloid Polym Sci 287, 1391–1404 (2009). https://doi.org/10.1007/s00396-009-2100-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2100-6

Keywords

Navigation