Skip to main content
Log in

Miscibility studies of PVC/Aramid blends

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Blends containing PVC and aramid (Ar) matrices were probed for their miscibility. In this respect, Ar chains were synthesized by aromatic diamine and diacid chloride in amide solvent. The Ar thus synthesized was characterized through Fourier transform infrared (FTIR) spectroscopy and molecular weight determination. Blend system Ar/PVC was investigated over a range of Ar/PVC ratios. Their mechanical profiles in terms of maximum stress, maximum strain, toughness, and initial moduli have been explored. Thermal properties and morphology of the blends were estimated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). A good correlation was observed between thermal, mechanical, and morphological properties of the blends. The presence of hydrogen bonding among polymers was evaluated through FTIR spectroscopy, which is believed to be responsible for the blend miscibility. Optimal thermal and mechanical profiles were depicted by the blend containing 40-wt% PVC in the Ar matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ovchinnikov YV, Tetel, Baum BY, Maklakov AJ (1971) Vysokomol Soedin Ser A 13:2422

    Google Scholar 

  2. Olabisi O (1975) Macromolecules 8:316

    Article  CAS  Google Scholar 

  3. Benedetti E, Posar F, D’alessio A, Vergdmini P, Ciardelli F (1985) J Polym Sci, Polym Phys Ed 23:1187

    Article  CAS  Google Scholar 

  4. Benedetti E, D’alessio A, Aglietto M, Ruggeri G, Vergdmini P, Ciardelli F (1986) Polym Eng Sci 26:9

    Article  CAS  Google Scholar 

  5. Varughese KT, Nando GB, De PP, De SK (1988) J Mater Sci 23:3894

    Article  CAS  Google Scholar 

  6. Margaritis AG, Kalfoglou NK (1987) Polymer 28:497

    Article  CAS  Google Scholar 

  7. Varughese KT, Sanyal SK (1989) J Appl Polym Sci 37:2537

    Article  CAS  Google Scholar 

  8. Akiba I, Ohba Y, Akiyama S (1999) Macromolecules 32:1175

    Article  CAS  Google Scholar 

  9. Varghese H, Bhagavan SS, Thomas S (2001) J Therm Anal Calorim 63:749

    Article  CAS  Google Scholar 

  10. Varghese H, Johnson T, Bhagavan SS, Joseph S, Thomas S, Groeninckx G (2002) J Polym Sci B Polym Phys 40:1556

    Article  CAS  Google Scholar 

  11. Stack S, O’Donogbue O, Birkinshaw C (2003) Polym Degrad Stab 79:29

    Article  CAS  Google Scholar 

  12. Vrandecic´ NS, Klaric´ I, Kovacic´ T (2004) Polym Degrad Stab 84:23

    Article  CAS  Google Scholar 

  13. Santra RN, Mukundo PG, Chaki TK, Nando GB (1993) Thermochim Acta 219:283

    Article  CAS  Google Scholar 

  14. Lizymol PP, Thomas S (1993) Polym Degrad Stab 41:59

    Article  CAS  Google Scholar 

  15. Asaletha R, Kumaran MG, Thomas S (1998) Polym Degrad Stab 61:431

    Article  CAS  Google Scholar 

  16. Oommen Z, Groeninckx G, Thomas S (2000) J Polym Sci B Polym Phys 38:525

    Article  CAS  Google Scholar 

  17. Neiro SMS, Dragunski DC, Rubira AF, Muniz EC (2000) Eur Polym J 36:583

    Article  Google Scholar 

  18. Kato T (2000) Struct Bond 96:95

    Article  CAS  Google Scholar 

  19. Song M, Long F (1991) Eur Polym J 27:983

    Article  CAS  Google Scholar 

  20. Lavallee C, Carmel M, Utracki LA, Szabo JP, Keough IA, Favis BD (1992) Polym Eng Sci 32:1716

    Article  CAS  Google Scholar 

  21. Bekturov EA, Bimendia LA (1982) Adv Polym Sci 41:99

    Google Scholar 

  22. Moskala EJ, Varnell DF, Coleman MM (1985) Polymer 26:228

    Article  CAS  Google Scholar 

  23. Wang LF, Pearce EM, Kwei TK (1991) J Polym Sci Polym Phys Ed 29:619

    Article  CAS  Google Scholar 

  24. Hjertberg T, Sorvic EM (1983) Polymer 24:685

    Article  CAS  Google Scholar 

  25. Talamini G, Pezzin G (1960) Makromol Chem 39:26

    Article  CAS  Google Scholar 

  26. Avaldi AC (1964) J Appl Polym Sci 8:747

    Article  Google Scholar 

  27. Pezzin G (1967) J Appl Polym Sci 11:2553

    Article  CAS  Google Scholar 

  28. Kim BK, Shin GS, Kim YJ, Park TS (1993) J Appl Sci 47:1581

    Article  CAS  Google Scholar 

  29. Pecora R, Berne J (1976) Dynamic Light Scattering. Plenum, New York

    Google Scholar 

  30. Chu B (1991) Laser Light Scattering. Academic, New York

    Google Scholar 

  31. Olabisi O, Robeson LM, Shaw MT (1979) Polymer–Polymer Miscibility. Academic, New York

    Google Scholar 

  32. Marco C, Gomez MA, Fatou JG, Etxeberria A, Elorza MM, Irvin JJ (1993) Eur Polym J 29:1477

    Article  CAS  Google Scholar 

  33. Ramesh S, Yahaya AH, Arof AK (2002) Solid State Ionics 148:483

    Article  CAS  Google Scholar 

  34. Ivan B, Kelen T, Tudos F (1989) Degradation and stabilization of polymers. Elsevier, New York

    Google Scholar 

  35. Bibi N, Sarwar MI, Ishaq M, Ahmad Z (2007) Polymers and Polymer Composites 15:313

    CAS  Google Scholar 

Download references

Acknowledgements

Special thanks are due to Dr. Gerhard Wegner, Director, MPI-P for providing the characterization facilities for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ilyas Sarwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabbir, S., Zulfiqar, S., Ishaq, M. et al. Miscibility studies of PVC/Aramid blends. Colloid Polym Sci 286, 673–681 (2008). https://doi.org/10.1007/s00396-007-1811-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-007-1811-9

Keywords

Navigation