Skip to main content
Log in

Irreversible structural changes in cryogenic mechanically milled isotactic polypropylene

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The influence of cryogenic mechanical milling on the structure and the thermal behavior of isotactic polypropylene was investigated by means of wide-angle X-ray scattering, differential scanning calorimetry and transmission electron microscopy. The results presented show that structural changes caused by mechanical milling at cryogenic temperatures are only partly reversible. The decrease in the degree of crystallinity as determined by differential scanning calorimetry with increasing milling time is attributed to a reversible transformation of the initial morphology into a “nanostructured” morphology, consisting of small “fragments” of the original isotactic polypropylene lamellae. During recrystallization from the molten state, there still exists an influence of the previous milling treatment, leading to significantly changed crystallization behavior. The reason for this behavior might be a decrease in the molecular weight or a change in the molecular weight distribution or the formation of long-chain branched polypropylene molecules induced by cryogenic mechanical milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a, b

Similar content being viewed by others

Notes

  1. The crystallinity values χ cm and χ cc were determined by integration of the melting or crystallization peak areas and normalizing the resulting enthalpy values ΔH m or ΔH c to the specific enthalpy \( \Delta H^{{\text{0}}}_{{\text{m}}} \). The value \( \Delta H^{{\text{0}}}_{{\text{m}}} {\left( {{\text{iPP}}} \right)} = 209\;{\text{J}}/{\text{g}} \) was taken from the literature [21]

References

  1. Khait K, Thorkelson JM (1999) Polym Plast Technol Eng 38:445

    Article  CAS  Google Scholar 

  2. Furgiuele NM, Khait K, Torkelson JM (1998) J Am Chem Soc 216:156

    Google Scholar 

  3. Ganglani M, Torkelson JM, Carr SH, Khait K (2001) J Appl Polym Sci 80:671

    Article  Google Scholar 

  4. Liu Y, Wang Q (2002) Polym J 34:132

    Article  CAS  Google Scholar 

  5. Cavalieri F, Padella F, Bourbonneux S (2002) Polymer 43:1155

    Article  CAS  Google Scholar 

  6. Smith AP, Spontak RJ, Koch CC, Smith SD, Ade H (2000) Macromol Mater Eng 274:1

    Article  CAS  Google Scholar 

  7. Smith AP, Ade H, Balik CM, Koch CC, Smith SD, Spontak RJ (2000) Macromolecules 33:2595

    Article  CAS  Google Scholar 

  8. Smith AP, Ade H, Koch CC, Smith SD, Spontak RJ (2000) Macromolecules 33:1163

    Article  CAS  Google Scholar 

  9. Smith AP, Ade H, Smith SD, Koch CC, Spontak RJ (2001) Macromolecules 34:1536

    Article  CAS  Google Scholar 

  10. Smith AP, Bai C, Ade H, Spontak RJ, Balik CM, Koch CC (1998) Macromol Rapid Commun 19:557

    Article  Google Scholar 

  11. Folkes MJ, Hope PS (1995) Polymer blends and alloys. Chapman and Hall, New York, pp 46–73

  12. Paul DR, Newman S (1978) Polymer blends, vol 2. Academic, New York, pp 35–60

  13. Lebovitz AH, Khait K, Thorkelson JM (2002) Macromolecules 35:8672

    Article  CAS  Google Scholar 

  14. Nesarikar AR, Carr SH, Khait K, Mirabella FM (1997) J Appl Polym Sci 63:1179

    Article  CAS  Google Scholar 

  15. Chen Z, Wang Q (2001) Polym Int 50:966

    Article  CAS  Google Scholar 

  16. Ratzsch M, Arnold M, Borsig E, Bucka H, Reichelt N (2002) Prog Polym Sci 27:1195

    Article  CAS  Google Scholar 

  17. Frendel AC (2000) PhD thesis. TU Clausthal-Zellerfeld

  18. Shaw WJD (1998) Mater Sci Forum 269–272:19

  19. Petermann J, Gleiter H (1975) Philos Mag 31:929

    Article  CAS  Google Scholar 

  20. Lu CH, Wang Q (2002) Chin J Struct Chem 21 1:7

    Google Scholar 

  21. Welsh WJ (1996) In: Mark JE (ed) Physical properties of polymers. American Institute of Physics, New York, pp 401–307

  22. Zhu X, Li Y, Yan D, Zhu P, Lu Q (2001) Colloid Polym Sci 279:292

    Article  CAS  Google Scholar 

  23. Kim YC, Ahn W, Kim CY (1997) Polym Eng Sci 37 6:1003

    Article  Google Scholar 

  24. Padden FJ, Keith HD (1973) J Appl Phys 44:1217

    Article  CAS  Google Scholar 

  25. Turner Jones A, Aizlewood JM, Beckett DR (1965) Macromol Chem 15:134

    Google Scholar 

  26. Cheng SZD, Janimak JJ, Zhang A (1990) Macromolecules 23:298

    Article  CAS  Google Scholar 

  27. De Carvalho B, Bretas RES (1998) J Appl Polym Sci 68:1159

    Article  Google Scholar 

  28. Philips PJ, Vatansever N (1987) Macromolecules 20:2138

    Article  Google Scholar 

  29. Lovinger AJ (1983) J Polym Sci Polym Phys Ed 21:97

    Article  CAS  Google Scholar 

  30. Norton DR, Keller A (1985) Polymer 26:704

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Deutsche Forschungsgemeinschaft (DFG Pe 220/25-1). The authors thank Henrike Bank for her help with some of the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stranz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stranz, M., Köster, U. Irreversible structural changes in cryogenic mechanically milled isotactic polypropylene. Colloid Polym Sci 282, 381–386 (2004). https://doi.org/10.1007/s00396-003-0953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0953-7

Keywords

Navigation