Skip to main content

Advertisement

Log in

Silica-based nanospheres, nanowires, nanosubstrates, nanotubes, and nanofiber arrays

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract.

Silica-based nanospheres, nanosphere wire-like agglomerates, nanotubes, and nanofiber arrays, bi- and coaxial SiC/SiO2 nanowires, and silica nanosubstrates have been generated and their structural, mechanical, and catalytic properties examined. Nearly monodisperse SiO2 nanospheres of diameter ≤30 nm have been synthesized in gram quantities and used to sequester active copper sites for the selective catalytic conversion of ethanol to acetaldehyde in a process that is at least three times more efficient than that which uses fumed silica produced from the flame hydrolysis of silicon tetrachloride. A Ni(III) solution has been reduced in an electroless process on the surface of the nanospheres, producing a ferromagnetic crystalline nickel coating of variable thickness. Partially agglomerated SiO2 nanospheres of diameter ∼45 nm have been used as nanosubstrates for SnOx crystallites of diameter 3–6 nm. The agglomeration of smaller nanospheres (d≤10 nm) to wire-like configurations has suggested the means to grow silica nanotubes and to produce unique silica nanofiber arrays. Generated silica nanotubes may fill an existing need for the catalytic conversion of high molecular weight hydrocarbons (MW∼1000). Both coaxial and side-by-side biaxially structured silicon carbide-silica nanowires have now also been generated from C/Si/SiO2 mixtures. The structure of these nanowires, their cross-sectional shape, and their structural transformation between a biaxial and coaxial configuration have been studied. The Young's modulus of the biaxially structured nanowires has been measured to be 50–100 GPa, depending on the size of the nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–c.
Fig. 3a–b.
Fig. 4a–b.
Fig. 5a–f.
Fig. 6a–f.
Fig. 7a–c.
Fig. 8a–b.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

  2. (a) Devoret MH, Esteve D, Urbina C (1992) A single-electron transistor made from a cadmium selenide nanocrystal. Nature 360:547; (b) Klein DL, Roth R, Lim AKL, Alivisates AP, McEuen PL (1997) Nature 389:699

    Google Scholar 

  3. Evans CC (1972) "Whiskers." (Mills and Boon, London) pp 46–65

  4. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95

    Google Scholar 

  5. (a) Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933; (b) Murray CB, Kagan CR, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706

    Google Scholar 

  6. (a) Seiyama T, Kato A, Fujishi K, Nagatami M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34:1502; (b) Nitta M, Haradome M (1979) Semiconductor gas sensors. Jpn J Appl Phys 48:977; (c) Lee SW, Tsai PP, Chen H (2000) Comparison study of SnO2 thin- and thick-film gas sensors. Sensors and Actuators B 67:122; (d) Morimitsu M, Ozaki Y, Suzuki S, Matsunaga M (2000) Effects of surface modification with platinum and ruthenium on temperature and humidity dependence of SnO2-based CO gas sensors. Sensors and Actuators B 67:184

    Google Scholar 

  7. (a) Cunningham DAH, Vogel W, Kageyama H, Tsubota S, Haruta MJ (1998) Catal 177:1; (b) Vartuli JC, Schmitt KD, Kresge CT, Roth WJ, Leonowicz ME, McCullen SB, Hellring SD, Beck JS, Schlenker JL, Olson DH, Sheppard EW (1994) Chem Mater 6:2317–2326

    CAS  Google Scholar 

  8. Gole JL, Stout JD, Rauch WL, Wang ZL (2000) Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates. Appl Phys Lett 76:2346

    Google Scholar 

  9. Gole JL, White MG (2000) Nanocatalysis: selective conversion of ethanol to acetaldehyde using monoatomically dispersed copper on silica nanospheres. J Catal 204:249

    Google Scholar 

  10. Gole JL, Shinall BD, Iretskii AV, White MG (2003) The phenol hydroxylation activity of silicon/silica nanostructures prepared from the reaction of metal/metal oxides at elevated temperature. (submitted)

  11. Gao RP, Wang AL, Stout JD, Gole JL (2000) Advanced Materials 12:1938

    Google Scholar 

  12. Wang ZL, Dai ZR, Bai ZG, Gao RP, Gole JL (2000) J Appl Phys Lett 77:3349

    Article  CAS  Google Scholar 

  13. Gole JL, Wang ZL (2001). Nanoscience Letters 1:449

    Google Scholar 

  14. Dai ZR, Gole JL, Stout JD, Wang ZL (2001) Tin oxide nanowires, nanoribbons, and nanotubes. J Phys Chem 106:1274

    Google Scholar 

  15. Yu DP, Bai ZG, Ding Y, Hang QL, Zhang HZ, Wang JJ, Zhou YH, Qian W, Xiong GC, Zhou HT, Feng SQ (1998) Appl Phys Lett 72:3458

    Article  CAS  Google Scholar 

  16. Zhang YF, Zhang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72:1835

    Article  CAS  Google Scholar 

  17. Morales AM, Lieber CM (1998) Science 279:208

    Article  CAS  PubMed  Google Scholar 

  18. Wang N, Tang YH, Zhang YF, Yu DP, Lee CS, Bello I, Lee ST (1998) Chem Phys Lett 283:368

    Article  CAS  Google Scholar 

  19. Wang N, Zhang YF, Tang YH, Lee CS, Lee ST (1998) Appl Phys Lett 73:3902

    Article  CAS  Google Scholar 

  20. Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Phys Rev B 58:16024

    Google Scholar 

  21. Wang N, Tang YH, Zhang YF, Lee CS, Bello I, Lee ST (1999) Chem Phys Lett 299:237

    Article  CAS  Google Scholar 

  22. Prokes SM, Carlos WE, Seals L, Lewis S, Gole JL (2002) Study of the formation of ferromagnetic Ni/SiO2 nanospheres. Materials Letters 54:85

    Google Scholar 

  23. Prokes SM (2002) private communication, based on ESR and Auger spectroscopy

  24. Lee ST, Wang N, Zhang YF,Tang YH (1999) Semiconductor nanowires from oxide. MRS Bulletin p 36

  25. (a) Yu H, Xiangfeng D, Qingjiao W, Lieber CM (2001) Science 291:5504; (b) Yi C, Lauhon LJ, Gudiksen MS, Wang J, Lieber CM (2001) Appl Phys Lett 78:2214; (c) Gudiksen MS, Wang J, Lieber CM (2001) J Phys Chem 105B:4062

    Google Scholar 

  26. Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89

    CAS  Google Scholar 

  27. Givargizov EI (1975) J Cryst Growth 32:20

    Article  Google Scholar 

  28. Boostma GA, Gassen HJ (1971) J Cryst Growth 10:223

    Article  Google Scholar 

  29. Hu J, Odom TW, Lieber CM (1999) Acc Chem Res 32:435

    Article  CAS  Google Scholar 

  30. (a) Bootsma GA, Knippenbegr WF, Verspui G (1971) Production of silicon-carbide whiskers from carbon nanoclusters. J Cryst Growth 11:297; (b) Zhou D, Seraphin S (1994) Chem Phys Lett 222:233

    Article  Google Scholar 

  31. Wang ZL, Dai ZR, Gao RP, Gole JL (2002) Measuring the Young's modulus of solid nanowires by in-situ TEM. J Electron Spectroscopy 51:579

    Google Scholar 

  32. Zhang Y, Suenaga K, Colliex C, Iijima S (1998) Science 281:973

    Article  CAS  PubMed  Google Scholar 

  33. Janicke MT, Landry CC, Christiansen SC, Kumar D, Stucky GD, Chmelka BF (1998) J Am Chem Soc 120:6940

    Article  CAS  Google Scholar 

  34. (a) Moseley PT (1997) Solid state gas sensors. Meas Sci Technol 8:223–237; (b) Liu CC (1998) Nano-crystalline tin oxide film for chemical sensor development. In: Abstracts from the 2nd international symposium on electrochemical microsystem technologies, 9–11 Sept, Tokyo, Japan, p 32

    Google Scholar 

  35. (a) Barnett RN, Yannouleas C, Landman U (1993) Z Phys D 119; (b) Landman U, Barnett RN, Cleveland CL, Cheng H-P (1993) In: Kumar VJ, Toassati E, Martin TP (eds) Clusters and fullerenes. World Scientific, London, p 39

  36. Moseley PT, Norris J, Williams DE (1991) "Techniques and Mechanisms in Gas Sensing." Adam Hilger, Bristol

  37. (a) Mapes JE, Eischens RP (1978) The infrared spectra of ammonia chemisorbed on cracking catalysts. J Phys Chem 58:1059 (1954); (b) Benesi HA, Winquist RHC (1978) Surface acidity of solid catalysts. Adv Catal 27:97

    Google Scholar 

  38. Hertl W, Hair ML (1971) Reaction of hexamethyldisilazane with silica. J Phys Chem 75:2181

    Google Scholar 

  39. Rosenthal DJ, Parks GD, White MG (1982) Estimating the relative acid site density of silica alumina by infrared spectroscopy using a selective reactant poison. AIChE J 33:336

    Google Scholar 

  40. Cabot Corporation (2002) Sales literature

  41. Kenvin JC, White MG (1995) Supported copper oxide catalysts prepared from mononuclear metal complexes: catalytic properties. J Catal 135:81–91

    Google Scholar 

  42. (a) Fairweg K, Debellefontaine H (1996) Appl Catal B Environ 10:L229; (b) Allian M, Germain A, Cseri T, Figueras F (1993) "Heterogeneous catalysis and fine chemicals III." Elsevier, Amsterdam

    Google Scholar 

  43. White MG (1993) Twenty-first century catalysts: challenges and opportunities. Chemical Business, pp 6–9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Gole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gole, J.L., Wang, Z.L., Dai, Z.R. et al. Silica-based nanospheres, nanowires, nanosubstrates, nanotubes, and nanofiber arrays. Colloid Polym Sci 281, 673–685 (2003). https://doi.org/10.1007/s00396-002-0819-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-002-0819-4

Keywords

Navigation