Skip to main content
Log in

Rat atrial engineered heart tissue: a new in vitro model to study atrial biology

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Engineered heart tissue (EHT) from rat cells is a useful tool to study ventricular biology and cardiac drug safety. Since atrial and ventricular cells differ significantly, EHT and other 3D cell culture formats generated from ventricular cells have been of limited value to study atrial biology. To date, reliable in vitro models that reflect atrial physiology are lacking. Therefore, we established a novel EHT model using rat atrial cells (atrial EHT, aEHT) to assess atrial physiology, contractility and drug response. The tissue constructs were characterized with regard to gene expression, histology, electrophysiology, and the response to atrial-specific drugs. We observed typical functional properties of atrial tissue in our model such as more regular spontaneous beating with lower force, shorter action potential duration, and faster contraction and relaxation compared to ventricular EHT (vEHT). The expression of atrial-specific genes and proteins was high, whereas ventricle-specific transcripts were virtually absent. The atrial-selective drug carbachol had a strong negative inotropic and chronotropic effect on aEHT only. Taken together, the results demonstrate the feasibility of aEHT as a novel atrial 3D model and as a benchmark for tissue engineering with human induced pluripotent stem cell-derived atrial-like cardiomyocytes. Atrial EHT faithfully recapitulates atrial physiology and shall be useful to study atrial molecular physiology in health and disease as well as drug response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amos GJ, Wettwer E, Metzger F, Li Q, Himmel HM, Ravens U (1996) Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol 491(1):31–50. https://doi.org/10.1113/jphysiol.1996.sp021194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Balouch M, Kolek MJ, Darbar D (2014) Improved understanding of the pathophysiology of atrial fibrillation through the lens of discrete pathological pathways. Glob Cardiol Sci Pract 5:24–36. https://doi.org/10.5339/gcsp.2014.5

    Article  Google Scholar 

  3. Barth AS, Merk S, Arnoldi E, Zwermann L, Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kääb S, Pfeufer A, Überfuhr P, Dugas M, Steinbeck G, Nabauer M (2005) Functional profiling of human atrial and ventricular gene expression. Pflugers Arch Eur J Physiol 450:201–208. https://doi.org/10.1007/s00424-005-1404-8

    Article  CAS  Google Scholar 

  4. Burashnikov A, Antzelevitch C (2006) Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation. Pacing Clin Electrophysiol 29:290–295. https://doi.org/10.1111/j.1540-8159.2006.00336.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Christ T, Galindo-Tovar A, Thoms M, Ravens U, Kaumann AJ (2009) Inotropy and L-type Ca 2 + current, activated by β1- and β2-adrenoceptors, are differently controlled by phosphodiesterases 3 and 4 in rat heart. Br J Pharmacol 156:62–83. https://doi.org/10.1111/j.1476-5381.2008.00015.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cyganek L, Tiburcy M, Sekeres K, Gerstenberg K, Bohnenberger H, Lenz C, Henze S, Salinas MSG, Zimmermann W-H, Hasenfuss G, Guan K (2018) Deep phenotyping of human induced pluripotent stem cell—derived atrial and ventricular cardiomyocytes. J Clin Investig. https://doi.org/10.1172/jci.insight.99941DS1

    Article  Google Scholar 

  7. Devalla HD, Schwach V, Ford JW, Milnes JT, El-Haou S, Jackson C, Gkatzis K, Elliott DA, de Sousa Chuva, Lopes SM, Mummery CL, Verkerk AO, Passier R (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7:394–410. https://doi.org/10.15252/emmm.201404757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Eder A, Vollert I, Hansen A, Eschenhagen T (2016) Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 96:214–224. https://doi.org/10.1016/j.addr.2015.05.010

    Article  PubMed  CAS  Google Scholar 

  9. Ghiroldi A, Piccoli M, Ciconte G, Pappone C, Anastasia L (2017) Regenerating the human heart : direct reprogramming strategies and their current limitations. Basic Res Cardiol 112:1–14. https://doi.org/10.1007/s00395-017-0655-9

    Article  CAS  Google Scholar 

  10. Godier-Furnémont AFG, Tiburcy M, Wagner E, Dewenter M, Lämmle S, El-Armouche A, Lehnart SE, Vunjak-Novakovic G, Zimmermann W-H (2015) Physiologic force-frequency in engineered heart muscle by electromechanical stimulation. Biomaterials 60:82–91. https://doi.org/10.1016/j.biomaterials.2015.03.055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Grandi E, Pandit SV, Voigt N, Workman AJ, Dobrev D, Jalife J, Bers DM (2011) Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res 109:1055–1066. https://doi.org/10.1161/CIRCRESAHA.111.253955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Grimm M, El-Armouche A, Zhang R, Anderson ME, Eschenhagen T (2007) Reduced contractile response to alpha1-adrenergic stimulation in atria from mice with chronic cardiac calmodulin kinase II inhibition. J Mol Cell Cardiol 42:643–652. https://doi.org/10.1016/j.yjmcc.2006.12.010

    Article  PubMed  CAS  Google Scholar 

  13. Hansen A, Eder A, Bönstrup M, Flato M, Mewe M, Schaaf S, Aksehirlioglu B, Schwörer A, Uebeler J, Eschenhagen T (2010) Development of a drug screening platform based on engineered heart tissue. Circ Res 107:35–44. https://doi.org/10.1161/CIRCRESAHA.109.211458

    Article  PubMed  CAS  Google Scholar 

  14. Harvey RD, Belevych AE (2003) Muscarinic regulation of cardiac ion channels. Br J Pharmacol 139:1074–1084. https://doi.org/10.1038/sj.bjp.0705338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Heijman J, Dobrev D (2014) Rat engineered heart tissue: a novel tool in the safety pharmacology toolkit? Basic Res Cardiol 109:437. https://doi.org/10.1007/s00395-014-0437-6

    Article  PubMed  Google Scholar 

  16. Hirt MN, Boeddinghaus J, Mitchell A, Schaaf S, Boernchen C, Mueller C, Schulz H, Hubner N, Stenzig J, Stoehr A, Neuber C, Eder A, Luther PK, Hansen A, Eschenhagen T (2014) Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol 74:151–161. https://doi.org/10.1016/j.yjmcc.2014.05.009

    Article  PubMed  CAS  Google Scholar 

  17. Jackman CP, Carlson AL, Bursac N (2016) Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials 111:66–79. https://doi.org/10.1016/j.biomaterials.2016.09.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jungen C, Scherschel K, Eickholt C, Kuklik P, Klatt N, Bork N, Salzbrunn T, Alken F, Angendohr S, Klene C, Mester J, Klöcker N, Veldkamp MW, Schumacher U, Willems S, Nikolaev VO, Meyer C (2017) Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias. Nat Commun 27:14155. https://doi.org/10.1038/ncomms14155

    Article  CAS  Google Scholar 

  19. Kurian T, Ambrosi C, Hucker W, Fedorov VV, Efimov IR (2010) Anatomy and electrophysiology of the human AV node. PACE Pacing Clin Electrophysiol 33:754–762. https://doi.org/10.1111/j.1540-8159.2010.02699.x

    Article  PubMed  Google Scholar 

  20. Lee JH, Protze SI, Laksman Z, Backx PH, Keller GM (2017) Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21(179–194):e4. https://doi.org/10.1016/j.stem.2017.07.003

    Article  CAS  Google Scholar 

  21. Lemoine MD, Krause T, Koivumäki JT, Prondzynski M, Schulze ML, Girdauskas E, Willems S, Hansen A, Christ TET (2018) Human iPSC-derived engineered heart tissue as a sensitive test system for QT prolongation and arrhythmic triggers. Circ Arrhythmia Electrophysiol. https://doi.org/10.1161/CIRCEP.117.006035

    Article  Google Scholar 

  22. Lemoine MD, Mannhardt I, Breckwoldt K, Prondzynski M, Flenner F, Ulmer B, Hirt MN, Neuber C, Horváth A, Kloth B, Reichenspurner H, Willems S, Hansen A, Eschenhagen T, Christ T (2017) Human iPSC-derived cardiomyocytes cultured in 3D engineered heart tissue show physiological upstroke velocity and sodium current density. Sci Rep 7:5464. https://doi.org/10.1038/s41598-017-05600-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Magnani JW, Rienstra M, Lin H, Sinner MF, Lubitz S, Mcmanus DD, Dupuis J, Ellinor PT, Benjamin EJ (2011) Atrial fibrillation: current knowledge and future directions in epidemiology and genomics. Circulation 124:1982–1993. https://doi.org/10.1161/CIRCULATIONAHA.111.039677

    Article  PubMed  PubMed Central  Google Scholar 

  24. Malan D, Zhang M, Stallmeyer B, Mu J, Fleischmann BK, Philipp ES, Boris S (2016) Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol. https://doi.org/10.1007/s00395-016-0530-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mesirca P, Alig J, Torrente AG, Müller JC, Marger L, Rollin A, Marquilly C, Vincent A, Dubel S, Bidaud I, Fernandez A, Seniuk A, Engeland B, Singh J, Miquerol L, Ehmke H, Eschenhagen T, Nargeot J, Wickman K, Isbrandt D, Mangoni ME (2015) Cardiac arrhythmia induced by genetic silencing of “funny” (f) channels is rescued by GIRK4 inactivation. Nat Commun 5:4664. https://doi.org/10.1038/ncomms5664

    Article  CAS  Google Scholar 

  26. Neumann T, Ravens U, Heusch G (1998) Characterization of excitation–contraction coupling in conscious dogs with pacing-induced heart failure. Cardiovasc Res 37(2):456–466

    Article  PubMed  CAS  Google Scholar 

  27. Ng SYSY, Wong CKCK, Tsang SYSY (2010) Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Physiol 299:C1234–C1249. https://doi.org/10.1152/ajpcell.00402.2009

    Article  CAS  Google Scholar 

  28. Page RL, Tilsch TW, Connolly SJ, Schnell DJ, Marcello SR, Wilkinson WE, Pritchett ELC (2003) Asymptomatic or “silent” atrial fibrillation frequency in untreated patients and patients receiving azimilide. Circulation 107:1141–1145. https://doi.org/10.1161/01.CIR.0000051455.44919.73

    Article  PubMed  Google Scholar 

  29. Qi XY, Yeh YH, Chartier D, Xiao L, Tsuji Y, Brundel BJJM, Kodama I, Nattel S (2009) The calcium/calmodulin/kinase system and arrhythmogenic after depolarizations in bradycardia-related acquired long-QT syndrome. Circ Arrhythmia Electrophysiol 2:295–304. https://doi.org/10.1161/CIRCEP.108.815654

    Article  CAS  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325. https://doi.org/10.1152/physrev.00031.2009

    Article  PubMed  Google Scholar 

  32. Smyrnias I, Mair W, Harzheim D, Walker SA, Roderick HL, Bootman MD (2010) Cell Calcium Comparison of the T-tubule system in adult rat ventricular and atrial myocytes, and its role in excitation–contraction coupling and inotropic stimulation. Cell Calcium 47:210–223. https://doi.org/10.1016/j.ceca.2009.10.001

    Article  PubMed  CAS  Google Scholar 

  33. Staerk L, Sherer JA, Ko D, Benjamin EJ, Helm RH (2017) Atrial fibrillation. Circ Res 120:1501–1517. https://doi.org/10.1161/CIRCRESAHA.117.309732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Stoehr A, Neuber C, Baldauf C, Vollert I, Friedrich FW, Flenner F, Carrier L, Eder A, Schaaf S, Hirt MN, Aksehirlioglu B, Tong CW, Moretti A, Eschenhagen T, Hansen A (2014) Automated analysis of contractile force and Ca2+ transients in engineered heart tissue. AJP Heart Circ Physiol 306:H1353–H1363. https://doi.org/10.1152/ajpheart.00705.2013

    Article  CAS  Google Scholar 

  35. Szigligeti P, Pankucsi C, Bányász T, Varró A, Nánási PP (1996) Action potential duration and force-frequency relationship in isolated rabbit, guinea pig and rat cardiac muscle. J Comp Physiol B 166:150–155

    Article  PubMed  CAS  Google Scholar 

  36. Trayanova NA, Boyle PM, Arevalo HJ, Zahid S (2014) Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach. Front Physiol 5:1–12. https://doi.org/10.3389/fphys.2014.00435

    Article  Google Scholar 

  37. Valverde CA, Mundiña-Weilenmann C, Said M, Ferrero P, Vittone L, Salas M, Palomeque J, Petroff MV, Mattiazzi A (2005) Frequency-dependent acceleration of relaxation in mammalian heart: a property not relying on phospholamban and SERCA2a phosphorylation. J Physiol 562:801–813. https://doi.org/10.1113/jphysiol.2004.075432

    Article  PubMed  CAS  Google Scholar 

  38. Vandecasteele G, Eschenhagen T, Scholz H, Stein B, Verde I, Fischmeister R (1999) Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med 5:331–334. https://doi.org/10.1038/6553

    Article  PubMed  CAS  Google Scholar 

  39. Weinberger F, Mannhardt I, Eschenhagen T (2017) Engineering cardiac muscle tissue. Circ Res 120:1487–1500. https://doi.org/10.1161/CIRCRESAHA.117.310738

    Article  PubMed  CAS  Google Scholar 

  40. Xie Y, Sato D, Garfinkel A, Qu Z, Weiss JN (2010) So little source, so much sink: requirements for after depolarizations to propagate in tissue. Biophys J 99:1408–1415. https://doi.org/10.1016/j.bpj.2010.06.042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yeh YH, Lemola K, Nattel S (2007) Vagal atrial fibrillation. Acta Cardiol Sin 23:1–12. https://doi.org/10.1161/CIRCULATIONAHA.107.737023

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Klaus Söhren, June Uebeler, Thomas Schulze, Tim Hartmann, and Grit Höppner for expert technical assistance. We additionally thank Tobias Krause for help with electrophysiological characterization, Alexander Fischer for imaging, Kristin Hartmann at Mouse Pathology Core Facility in Hamburg for histological staining, the team at FACS-Sorting Core Facility in Hamburg for their service and help regarding flow cytometry, and the UKE Microscopy Imaging Facility.

Funding

This work was supported by funding from the DZHK (German Centre for Cardiovascular Research), the German Ministry of Education and Research (BMBF) and the e:Med symAtrial consortium, a BMBF initiative.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design of the experiments. JK performed atrial cell isolation and EHT preparation. AL performed force frequency experiments and histology. JK and AL performed drug response experiments, gene expression analysis, and flow cytometry. Contractility was assessed by JK, AL and JS. JK and KS performed whole-mount immunostainings. All electrophysiological experiments were done by MDL, with help from Tobias Krause and TC. Rat contractility data was contributed by Klaus Söhren and TC. JK, AL, JS and TE wrote the manuscript.

Corresponding author

Correspondence to Justus Stenzig.

Ethics declarations

Ethical standards

All animal work was conducted in accordance with the Guide for the Care and Use of Laboratory Animals as adopted by the United States National Institutes of Health (NIH publication No. 85-23, revised 1996). All animal work was approved by the local Animal Welfare Committee of the City of Hamburg, Germany (approval #08/14). The manuscript does not contain clinical studies or patient data.

Conflict of interest

TE is cofounder of EHT Technologies GmbH Hamburg, which provides technical equipment for making and video-optical analysis of EHTs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Optimization of protocols.

Flow cytometric analysis of cell quality after both atrial and ventricular cell preparation. a) Cell viability was analyzed by staining with the fixable viability dye eFluor450. b) Cardiomyocyte content was determined by staining for cardiac troponin T. c) Effect of mitosis inhibition on EHT culture. Comparison of one-time only and weekly treatment with AraC with regard to d) cultivation duration and e) stability of resting length. f) Relative transcript levels of fibroblast marker genes after culture period for verification of AraC effect on fibroblast proliferation. Transcript levels were normalized to Gusb transcript levels. Mean ± SEM, unpaired t-test, ***p<0.001, numbers in brackets refer to total number of EHTs/number of batches. Fig. S2 EHT morphology. a) and b) representative H&E staining of vEHT and aEHT paraffin sections. c) Alpha-actin stained aEHT paraffin section, shown in higher magnification in d). Fig. S3 Expression analysis of cell-type markers. Overview of all analyzed atrial-specific a) – d), ventricular-specific e) – j), and pacemaker genes k) - l). For Pitx2 (c) transcript levels were measured in left and right atria separately (LA and RA, respectively) to show chamber-specific expression. Error bars show mean ± SEM, EHT numbers refer to total number of EHTs/number of batches. Fig. S4 Batch-to-batch variability. Comparison of five vEHT and seven aEHT batches at day 14-15 with regard to a) frequency, b) force generation, c) contraction time, and d) relaxation time. Error bars show mean ± SEM, no significant differences between the batches. Fig. S5 Protocol overview. Graphical illustration of the aEHT preparation protocol including approximate time needed for each step. Tab. S1 Primer sequences. Overview of all genes analyzed with qPCR with according primer sequences. Tab. S2 Cell type-specific markers. Markers were chosen for gene expression analysis in the atrial and ventricular EHT model. (DOCX 2080 kb)

Supplementary material 2 (PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krause, J., Löser, A., Lemoine, M.D. et al. Rat atrial engineered heart tissue: a new in vitro model to study atrial biology. Basic Res Cardiol 113, 41 (2018). https://doi.org/10.1007/s00395-018-0701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-018-0701-2

Keywords

Navigation