Skip to main content

Advertisement

Log in

SUV39H1 mediated SIRT1 trans-repression contributes to cardiac ischemia–reperfusion injury

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Ischemic reperfusion (I/R) contributes to deleterious cardiac remodeling and heart failure. The deacetylase SIRT1 has been shown to protect the heart from I/R injury. We examined the mechanism whereby I/R injury represses SIRT1 transcription in the myocardium. There was accumulation of trimethylated histone H3K9 on the proximal SIRT1 promoter in the myocardium in mice following I/R injury and in cultured cardiomyocytes exposed to hypoxia–reoxygenation (H/R). In accordance, the H3K9 trimethyltransferase SUV39H1 bound to the SIRT1 promoter and repressed SIRT1 transcription. SUV39H1 expression was up-regulated in the myocardium in mice following I/R insults and in H/R-treated cardiomyocytes paralleling SIRT1 down-regulation. Silencing SUV39H1 expression or suppression of SUV39H1 activity erased H3K9Me3 from the SIRT1 promoter and normalized SIRT1 levels in cardiomyocytes. Meanwhile, SUV39H1 deficiency or inhibition attenuated I/R-induced infarction and improved heart function in mice likely through influencing ROS levels in a SIRT1-dependent manner. Therefore, our data uncover a novel mechanism for SIRT1 trans-repression during cardiac I/R injury and present SUV39H1 as a druggable target for the development of therapeutic strategies against ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, Roche D, Maison C, Quivy JP, Almouzni G, Amigorena S (2012) An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487:249–253. doi:10.1038/nature11173

    Article  CAS  PubMed  Google Scholar 

  2. Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galan C, Winter GE, Engist B, Gerle B, O’Sullivan RJ, Martens JH, Walter J, Manke T, Lachner M, Jenuwein T (2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55:277–290. doi:10.1016/j.molcel.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  3. Bulut-Karslioglu A, Perrera V, Scaranaro M, de la Rosa-Velazquez IA, van de Nobelen S, Shukeir N, Popow J, Gerle B, Opravil S, Pagani M, Meidhof S, Brabletz T, Manke T, Lachner M, Jenuwein T (2012) A transcription factor-based mechanism for mouse heterochromatin formation. Nat Struct Mol Biol 19:1023–1030. doi:10.1038/nsmb.2382

    Article  CAS  PubMed  Google Scholar 

  4. Cao Z, Hu Y, Wu W, Ha T, Kelley J, Deng C, Chen Q, Li C, Li J, Li Y (2009) The TIR/BB-loop mimetic AS-1 protects the myocardium from ischaemia/reperfusion injury. Cardiovasc Res 84:442–451. doi:10.1093/cvr/cvp234

    Article  CAS  PubMed  Google Scholar 

  5. Chaib H, Nebbioso A, Prebet T, Castellano R, Garbit S, Restouin A, Vey N, Altucci L, Collette Y (2012) Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia 26:662–674. doi:10.1038/leu.2011.271

    Article  CAS  PubMed  Google Scholar 

  6. Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123:437–448. doi:10.1016/j.cell.2005.08.011

    Article  CAS  PubMed  Google Scholar 

  7. Fang M, Fan Z, Tian W, Zhao Y, Li P, Xu H, Zhou B, Zhang L, Wu X, Xu Y (2016) HDAC4 mediates IFN-gamma induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells. Biochim Biophys Acta 1859:294–305. doi:10.1016/j.bbagrm.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  8. Fang M, Kong X, Li P, Fang F, Wu X, Bai H, Qi X, Chen Q, Xu Y (2009) RFXB and its splice variant RFXBSV mediate the antagonism between IFNgamma and TGFbeta on COL1A2 transcription in vascular smooth muscle cells. Nucleic Acids Res 37:4393–4406. doi:10.1093/nar/gkp398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1:143–145. doi:10.1038/nchembio721

    Article  CAS  PubMed  Google Scholar 

  10. Hausenloy DJ, Yellon DM (2015) Targeting myocardial reperfusion injury—the search continues. N Engl J Med 373:1073–1075. doi:10.1056/NEJMe1509718

    Article  PubMed  Google Scholar 

  11. Hess ML, Manson NH (1984) Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol 16:969–985. doi:10.1016/S0022-2828(84)80011-5

    Article  CAS  PubMed  Google Scholar 

  12. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi:10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  13. Heusch G, Gersh BJ (2016) The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J. doi:10.1093/eurheartj/ehw224

    PubMed  PubMed Central  Google Scholar 

  14. Heusch G, Rassaf T (2016) Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ Res 119:676–695. doi:10.1161/CIRCRESAHA.116.308736

    Article  CAS  PubMed  Google Scholar 

  15. Hohl M, Wagner M, Reil JC, Muller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Bohm M, Backs J, Maack C (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123:1359–1370. doi:10.1172/JCI61084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182. doi:10.1161/CIRCULATIONAHA.110.958033

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hunter RG, Murakami G, Dewell S, Seligsohn M, Baker ME, Datson NA, McEwen BS, Pfaff DW (2012) Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci USA 109:17657–17662. doi:10.1073/pnas.1215810109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, Losordo DW (2005) Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation 111:1114–1120. doi:10.1161/01.CIR.0000157144.24888.7E

    Article  PubMed  Google Scholar 

  19. Jin J, Iakova P, Jiang Y, Medrano EE, Timchenko NA (2011) The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology 54:989–998. doi:10.1002/hep.24471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaminski KA, Bonda TA, Korecki J, Musial WJ (2002) Oxidative stress and neutrophil activation—the two keystones of ischemia/reperfusion injury. Int J Cardiol 86:41–59. doi:10.1016/S0167-5273(02)00189-4

    Article  PubMed  Google Scholar 

  21. Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR (2010) Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 29:576–588. doi:10.1038/onc.2009.361

    Article  CAS  PubMed  Google Scholar 

  22. Lee YM, Lim JH, Yoon H, Chun YS, Park JW (2011) Antihepatoma activity of chaetocin due to deregulated splicing of hypoxia-inducible factor 1 alpha pre-mRNA in mice and in vitro. Hepatology 53:171–180. doi:10.1002/hep.24010

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Magri L, Zhang F, Marsh NO, Albrecht S, Huynh JL, Kaur J, Kuhlmann T, Zhang W, Slesinger PA, Casaccia P (2015) Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci 35:352–365. doi:10.1523/JNEUROSCI.2606-14.2015

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lomberk G, Mathison AJ, Grzenda A, Seo S, DeMars CJ, Rizvi S, Bonilla-Velez J, Calvo E, Fernandez-Zapico ME, Iovanna J, Buttar NS, Urrutia R (2012) Sequence-specific recruitment of heterochromatin protein 1 via interaction with Kruppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases. J Biol Chem 287:13026–13039. doi:10.1074/jbc.M112.342634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mariani J, Ou R, Bailey M, Rowland M, Nagley P, Rosenfeldt F, Pepe S (2000) Tolerance to ischemia and hypoxia is reduced in aged human myocardium. J Thorac Cardiovasc Surg 120:660–667. doi:10.1067/mtc.2000.106528

    Article  CAS  PubMed  Google Scholar 

  26. Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, Elsaesser RS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans JP, Vrints CJ, Kass DA (2008) High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation 117:1810–1819. doi:10.1161/CIRCULATIONAHA.107.725481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muller-Ott K, Erdel F, Matveeva A, Mallm JP, Rademacher A, Hahn M, Bauer C, Zhang Q, Kaltofen S, Schotta G, Hofer T, Rippe K (2014) Specificity, propagation, and memory of pericentric heterochromatin. Mol Syst Biol 10:746. doi:10.15252/msb.20145377

    Article  PubMed  PubMed Central  Google Scholar 

  28. Muller WA (2009) Mechanisms of transendothelial migration of leukocytes. Circ Res 105:223–230. doi:10.1161/CIRCRESAHA.109.200717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Olcina MM, Leszczynska KB, Senra JM, Isa NF, Harada H, Hammond EM (2016) H3K9me3 facilitates hypoxia-induced p53-dependent apoptosis through repression of APAK. Oncogene 35:793–799. doi:10.1038/onc.2015.134

    Article  CAS  PubMed  Google Scholar 

  30. Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB, Lander ES, Armstrong SA, Daley GQ (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483:598–602. doi:10.1038/nature10953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39 h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337. doi:10.1016/S0092-8674(01)00542-6

    Article  CAS  PubMed  Google Scholar 

  32. Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610. doi:10.1161/CIRCRESAHA.114.303822

    Article  CAS  PubMed  Google Scholar 

  33. Roth GA, Huffman MD, Moran AE, Feigin V, Mensah GA, Naghavi M, Murray CJ (2015) Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 132:1667–1678. doi:10.1161/CIRCULATIONAHA.114.008720

    Article  PubMed  Google Scholar 

  34. Schweizer S, Harms C, Lerch H, Flynn J, Hecht J, Yildirim F, Meisel A, Marschenz S (2015) Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia. J Cereb Blood Flow Metab 35:1640–1647. doi:10.1038/jcbfm.2015.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Snigdha S, Prieto GA, Petrosyan A, Loertscher BM, Dieskau AP, Overman LE, Cotman CW (2016) H3K9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged hippocampus. J Neurosci 36:3611–3622. doi:10.1523/JNEUROSCI.2693-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun L, Li H, Chen J, Dehennaut V, Zhao Y, Yang Y, Iwasaki Y, Kahn-Perles B, Leprince D, Chen Q, Shen A, Xu Y (2013) A SUMOylation-dependent pathway regulates SIRT1 transcription and lung cancer metastasis. J Nat Cancer Inst 105:887–898. doi:10.1093/jnci/djt118

    Article  CAS  PubMed  Google Scholar 

  37. Sun L, Li H, Chen J, Iwasaki Y, Kubota T, Matsuoka M, Shen A, Chen Q, Xu Y (2013) PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. J Cell Sci 126:3939–3947. doi:10.1242/jcs.127381

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka M, Mokhtari GK, Terry RD, Balsam LB, Lee KH, Kofidis T, Tsao PS, Robbins RC (2004) Overexpression of human copper/zinc superoxide dismutase (SOD1) suppresses ischemia–reperfusion injury and subsequent development of graft coronary artery disease in murine cardiac grafts. Circulation 110:II200–II206. doi:10.1161/01.CIR.0000138390.81640.54

    PubMed  Google Scholar 

  39. Vander Heide RS, Steenbergen C (2013) Cardioprotection and myocardial reperfusion: pitfalls to clinical application. Circ Res 113:464–477. doi:10.1161/CIRCRESAHA.113.300765

    Article  CAS  PubMed  Google Scholar 

  40. Vaute O, Nicolas E, Vandel L, Trouche D (2002) Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res 30:475–481. doi:10.1093/nar/gkq914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  CAS  PubMed  Google Scholar 

  42. Vogel B, Shinagawa H, Hofmann U, Ertl G, Frantz S (2015) Acute DNase1 treatment improves left ventricular remodeling after myocardial infarction by disruption of free chromatin. Basic Res Cardiol 110:15. doi:10.1007/s00395-015-0472-y

    Article  PubMed  Google Scholar 

  43. Watson GW, Wickramasekara S, Palomera-Sanchez Z, Black C, Maier CS, Williams DE, Dashwood RH, Ho E (2014) SUV39H1/H3K9me3 attenuates sulforaphane-induced apoptotic signaling in PC3 prostate cancer cells. Oncogenesis 3:e131. doi:10.1038/oncsis.2014.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu W, Hu Y, Li J, Zhu W, Ha T, Que L, Liu L, Zhu Q, Chen Q, Xu Y, Li C, Li Y (2014) Silencing of Pellino1 improves post-infarct cardiac dysfunction and attenuates left ventricular remodelling in mice. Cardiovasc Res 102:46–55. doi:10.1093/cvr/cvu007

    Article  CAS  PubMed  Google Scholar 

  45. Xiong Q, Ye L, Zhang P, Lepley M, Tian J, Li J, Zhang L, Swingen C, Vaughan JT, Kaufman DS, Zhang J (2013) Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation 127:997–1008. doi:10.1161/CIRCULATIONAHA.112.000641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang Y, Duan W, Li Y, Jin Z, Yan J, Yu S, Yi D (2013) Novel role of silent information regulator 1 in myocardial ischemia. Circulation 128:2232–2240. doi:10.1161/CIRCULATIONAHA.113.002480

    Article  PubMed  Google Scholar 

  47. Yang YJ, Song TY, Park J, Lee J, Lim J, Jang H, Kim YN, Yang JH, Song Y, Choi A, Lee HY, Jo CH, Han JW, Kim ST, Youn HD, Cho EJ (2013) Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis 4:e583. doi:10.1038/cddis.2013.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yellon DM, Baxter GF (2000) Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart 83:381–387. doi:10.1136/heart.83.4.381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi:10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  50. Yu L, Yang G, Weng X, Liang P, Li L, Li J, Fan Z, Tian W, Wu X, Xu H, Fang M, Ji Y, Li Y, Chen Q, Xu Y (2015) Histone methyltransferase SET1 mediates angiotensin II-induced endothelin-1 transcription and cardiac hypertrophy in mice. Arterioscler Thromb Vasc Biol 35:1207–1217. doi:10.1161/ATVBAHA.115.305230

    Article  CAS  PubMed  Google Scholar 

  51. Zhang CL, McKinsey TA, Olson EN (2002) Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22:7302–7312. doi:10.1128/MCB.22.20.7302-7312.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by grants from the Natural Science Foundation of China (91439106, 81670223, 81470418, 81270194, and 81270292), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). HLH was supported by an intramural grant (CX135040) from Jiangsu Agriculture Science and Technology Innovation Fund. YX and YHL are Fellows at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine.

Author information

Authors and Affiliations

Author notes

  1. G. Yang, X. Zhang, and X. Weng contributed equally to this study.

    Authors

    Corresponding authors

    Correspondence to Dachun Xu or Yong Xu.

    Ethics declarations

    Conflict of interest

    None.

    Electronic supplementary material

    Below is the link to the electronic supplementary material.

    Supplementary material 1 (DOC 14078 kb)

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Yang, G., Zhang, X., Weng, X. et al. SUV39H1 mediated SIRT1 trans-repression contributes to cardiac ischemia–reperfusion injury. Basic Res Cardiol 112, 22 (2017). https://doi.org/10.1007/s00395-017-0608-3

    Download citation

    • Received:

    • Accepted:

    • Published:

    • DOI: https://doi.org/10.1007/s00395-017-0608-3

    Keywords

    Navigation