Skip to main content
Log in

Acute DNase1 treatment improves left ventricular remodeling after myocardial infarction by disruption of free chromatin

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) leads to necrosis and uncontrolled release of cellular content. Binucleated and polyploid cardiomyocytes contain high amounts of chromatin, a DNA polymer of histones which are cytotoxic. We hypothesized that chromatin from necrotic cells accumulates in the non-perfused, ischemic infarct region, causing local high concentrations of cytotoxic histones, thereby potentiating damage to the heart after MI. The endonuclease DNase1 is capable of dispersing extracellular chromatin through linker DNA digestion which could lead to a decrease in local histone concentrations and cytotoxicity. It was confirmed that after permanent coronary artery ligation in mice, extracellular histones accumulated within the infarcted myocardium. In vitro, histones caused myocyte cytotoxicity. For protection against histone-mediated cytotoxicity after MI in vivo, DNase1 was administered within the first 6 h after induction. Indeed, DNase1 accumulation in the infarcted region of the heart was observed, as well as effective disruption of extracellular cytotoxic chromatin and subsequent reduction of high local histone concentrations. Functionally, acute DNase1 treatment resulted in significantly improved left ventricular remodeling in mice as measured by serial echocardiography, while mortality, infarct size and inflammatory parameters were unaffected. Notably, improved cardiomyocyte survival within the infarct region was observed and might account for the protective effects in acutely DNase1-treated animals. Disruption of extracellular cytotoxic chromatin within the infarcted heart by acute DNase1 treatment is a promising approach to protect myocytes from histone-induced cell death and subsequent left ventricular dysfunction after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

dsDNA:

Double-stranded DNA

NET:

Neutrophil extracellular trap

cfDNA:

Cell-free DNA

LDH:

Lactate dehydrogenase

PSR:

Picrosirius red

MI:

Myocardial infarction

MI/R:

Myocardial ischemia/reperfusion

H3-cit:

Histone H3 citrullination

ESM fraction:

Extracellular soluble myocardial fraction

DNase1:

Desoxyribonuclease 1

NRVM:

Neonatal rat ventricular myocytes

References

  1. Abrams ST, Zhang N, Dart C, Wang SS, Thachil J, Guan Y, Wang G, Toh C-H (2013) Human CRP defends against the toxicity of circulating histones. J Immunol Baltim Md 1950 191:2495–2502. doi:10.4049/jimmunol.1203181

    CAS  Google Scholar 

  2. Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, Wang SS, Brohi K, Kipar A, Yu W, Wang G, Toh C-H (2013) Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 187:160–169. doi:10.1164/rccm.201206-1037OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJA (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829. doi:10.2353/ajpath.2007.060547

    Article  PubMed Central  PubMed  Google Scholar 

  4. Atamaniuk J, Hsiao Y-Y, Mustak M, Bernhard D, Erlacher L, Fodinger M, Tiran B, Stuhlmeier KM (2011) Analysing cell-free plasma DNA and SLE disease activity. Eur J Clin Invest 41:579–583. doi:10.1111/j.1365-2362.2010.02435.x

    Article  CAS  PubMed  Google Scholar 

  5. Berends ETM, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M (2010) Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2:576–586. doi:10.1159/000319909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Blömer N, Pachel C, Hofmann U, Nordbeck P, Bauer W, Mathes D, Frey A, Bayer B, Vogel B, Ertl G, Bauersachs J, Frantz S (2013) 5-Lipoxygenase facilitates healing after myocardial infarction. Basic Res Cardiol 108:367. doi:10.1007/s00395-013-0367-8

    Article  PubMed Central  PubMed  Google Scholar 

  7. Brill A, Fuchs TA, Savchenko A, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD (2011) Neutrophil extracellular traps promote deep vein thrombosis in mice. JTH 10:136–144. doi:10.1111/j.1538-7836.2011.04544.x

    Google Scholar 

  8. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535. doi:10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  9. Cabrera-Fuentes HA, Ruiz-Meana M, Simsekyilmaz S, Kostin S, Inserte J, Saffarzadeh M, Galuska SP, Vijayan V, Barba I, Barreto G, Fischer S, Lochnit G, Ilinskaya ON, Baumgart-Vogt E, Böning A, Lecour S, Hausenloy DJ, Liehn EA, Garcia-Dorado D, Schlüter K-D, Preissner KT (2014) RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-α in cardiac ischaemia/reperfusion injury. Thromb Haemost 112:1110–1119. doi:10.1160/TH14-08-0703

    Article  CAS  PubMed  Google Scholar 

  10. Fraccarollo D, Galuppo P, Motschenbacher S, Ruetten H, Schäfer A, Bauersachs J (2014) Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition. Basic Res Cardiol 109:421. doi:10.1007/s00395-014-0421-1

    Article  PubMed  Google Scholar 

  11. Frantz S, Hofmann U, Fraccarollo D, Schäfer A, Kranepuhl S, Hagedorn I, Nieswandt B, Nahrendorf M, Wagner H, Bayer B, Pachel C, Schön MP, Kneitz S, Bobinger T, Weidemann F, Ertl G, Bauersachs J (2012) Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J Off Publ Fed Am Soc Exp Biol 27:871–881. doi:10.1096/fj.12-214049

    Google Scholar 

  12. Frantz S, Hu K, Bayer B, Gerondakis S, Strotmann J, Adamek A, Ertl G, Bauersachs J (2006) Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB J Off Publ Fed Am Soc Exp Biol 20:1918–1920. doi:10.1096/fj.05-5133fje

    CAS  Google Scholar 

  13. Frantz S, Hu K, Widder J, Bayer B, Witzel CC, Schmidt I, Galuppo P, Strotmann J, Ertl G, Bauersachs J (2004) Peroxisome proliferator activated-receptor agonism and left ventricular remodeling in mice with chronic myocardial infarction. Br J Pharmacol 141:9–14. doi:10.1038/sj.bjp.0705585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Frantz S, Kobzik L, Kim YD, Fukazawa R, Medzhitov R, Lee RT, Kelly RA (1999) Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest 104:271–280. doi:10.1172/JCI6709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Frantz S, Nahrendorf M (2014) Cardiac macrophages and their role in ischemic heart disease. Cardiovasc Res 102(2):240–248. doi:10.1093/cvr/cvu025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880–15885. doi:10.1073/pnas.1005743107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gaipl US, Beyer TD, Heyder P, Kuenkele S, Böttcher A, Voll RE, Kalden JR, Herrmann M (2004) Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin. Arthritis Rheum 50:640–649. doi:10.1002/art.20034

    Article  CAS  PubMed  Google Scholar 

  18. Gauthier VJ, Tyler LN, Mannik M (1996) Blood clearance kinetics and liver uptake of mononucleosomes in mice. J Immunol 156:1151–1156

    CAS  PubMed  Google Scholar 

  19. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatol Baltim Md 21:1465–1468

    CAS  Google Scholar 

  20. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi:10.1016/S0140-6736(14)60107-0

    Article  PubMed  Google Scholar 

  21. Hirsch JG (1958) Bactericidal action of histone. J Exp Med 108:925–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hofmann U, Frantz S (2013) How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol 108:356. doi:10.1007/s00395-013-0356-y

    Article  PubMed Central  PubMed  Google Scholar 

  23. Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M, Liao X, Billiar T, Xu J, Esmon CT, Tsung A (2011) Endogenous histones function as alarmins in sterile inflammatory liver injury through toll-like receptor 9. Hepatol Baltim Md 54:999–1008. doi:10.1002/hep.24501

    Article  CAS  Google Scholar 

  24. Hughes BG, Schulz R (2014) Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 109:424. doi:10.1007/s00395-014-0424-y

    Article  PubMed  Google Scholar 

  25. Kawai Y, Yoshida M, Arakawa K, Kumamoto T, Morikawa N, Masamura K, Tada H, Ito S, Hoshizaki H, Oshima S, Taniguchi K, Terasawa H, Miyamori I, Kishi K, Yasuda T (2004) Diagnostic use of serum deoxyribonuclease I activity as a novel early-phase marker in acute myocardial infarction. Circulation 109:2398–2400. doi:10.1161/01.CIR.0000129232.61483.43

    Article  CAS  PubMed  Google Scholar 

  26. Kominato Y, Iida R, Nakajima T, Tajima Y, Takagi R, Makita C, Kishi K, Ueki M, Kawai Y, Yasuda T (2007) Hypoxia induces upregulation of the deoxyribonuclease I gene in the human pancreatic cancer cell line QGP-1. Biochim Biophys Acta 1770:1567–1575. doi:10.1016/j.bbagen.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  27. Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, Wang Y (2012) PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol 3:307. doi:10.3389/fimmu.2012.00307

    Article  PubMed Central  PubMed  Google Scholar 

  28. Li GH, Shi Y, Chen Y, Sun M, Sader S, Maekawa Y, Arab S, Dawood F, Chen M, De Couto G, Liu Y, Fukuoka M, Yang S, Da Shi M, Kirshenbaum LA, McCulloch CA, Liu P (2009) Gelsolin regulates cardiac remodeling after myocardial infarction through DNase I-mediated apoptosis. Circ Res 104:896–904. doi:10.1161/CIRCRESAHA.108.172882

    Article  CAS  PubMed  Google Scholar 

  29. Liu Z, Yue S, Chen X, Kubin T, Braun T (2010) Regulation of cardiomyocyte polyploidy and multinucleation by Cycling1. Circ Res 106:1498–1506. doi:10.1161/CIRCRESAHA.109.211888

    Article  CAS  PubMed  Google Scholar 

  30. Ludwig S, Mannherz HG, Schmitt S, Schäffer M, Zentgraf H, Napirei M (2009) Murine serum deoxyribonuclease 1 (Dnase1) activity partly originates from the liver. Int J Biochem Cell Biol 41:1079–1093. doi:10.1016/j.biocel.2008.09.030

    Article  CAS  PubMed  Google Scholar 

  31. Mangold A, Alias S, Scherz T, Hofbauer T, Jakowitsch J, Panzenböck A, Simon D, Laimer D, Bangert C, Kammerlander AA, Mascherbauer J, Winter MP, Distelmaier K, Adlbrecht C, Preissner KT, Lang IM (2014) Coronary neutrophil extracellular trap burden and DNase activity in ST-elevation acute coronary syndrome are predictors of ST-Segment resolution and infarct size. Circ Res. doi:10.1161/CIRCRESAHA.116.304944

    PubMed  Google Scholar 

  32. Mercer TR, Edwards SL, Clark MB, Neph SJ, Wang H, Stergachis AB, John S, Sandstrom R, Li G, Sandhu KS, Ruan Y, Nielsen LK, Mattick JS, Stamatoyannopoulos JA (2013) DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements. Nat Genet 45:852–859. doi:10.1038/ng.2677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. De Meyer SF, Suidan GL, Fuchs TA, Monestier M, Wagner DD (2012) Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thromb Vasc Biol 32:1884–1891. doi:10.1161/ATVBAHA.112.250993

    Article  PubMed Central  PubMed  Google Scholar 

  34. Napirei M, Ricken A, Eulitz D, Knoop H, Mannherz HG (2004) Expression pattern of the deoxyribonuclease 1 gene: lessons from the Dnase1 knockout mouse. Biochem J 380:929–937. doi:10.1042/BJ20040046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Napirei M, Wulf S, Mannherz HG (2004) Chromatin breakdown during necrosis by serum Dnase1 and the plasminogen system. Arthritis Rheum 50:1873–1883. doi:10.1002/art.20267

    Article  CAS  PubMed  Google Scholar 

  36. Oliveri M, Daga A, Cantoni C, Lunardi C, Millo R, Puccetti A (2001) DNase I mediates internucleosomal DNA degradation in human cells undergoing drug-induced apoptosis. Eur J Immunol 31:743–751. doi:10.1002/1521-4141(200103)31:3%3c743:AID-IMMU743%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  37. Pereira LF, Marco FM, Boimorto R, Caturla A, Bustos A, De la Concha EG, Subiza JL (1994) Histones interact with anionic phospholipids with high avidity; its relevance for the binding of histone-antihistone immune complexes. Clin Exp Immunol 97:175–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pisetsky DS (2012) The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol Orlando Fla 144:32–40. doi:10.1016/j.clim.2012.04.006

    Article  CAS  Google Scholar 

  39. Ritter O, Schuh K, Brede M, Röthlein N, Burkard N, Hein L, Neyses L (2003) AT2 receptor activation regulates myocardial eNOS expression via the calcineurin-NF-AT pathway. FASEB J Off Publ Fed Am Soc Exp Biol 17:283–285. doi:10.1096/fj.02-0321fje

    CAS  Google Scholar 

  40. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7:e32366. doi:10.1371/journal.pone.0032366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Savchenko AS, Borissoff JI, Martinod K, De Meyer SF, Gallant M, Erpenbeck L, Brill A, Wang Y, Wagner DD (2013) VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 123(1):141–148. doi:10.1182/blood-2013-07-514992

    Article  PubMed  Google Scholar 

  42. Shinde AV, Frangogiannis NG (2013) Fibroblasts in myocardial infarction: a role in inflammation and repair. J Mol Cell Cardiol 70C:74–82. doi:10.1016/j.yjmcc.2013.11.015

    Google Scholar 

  43. Sillesen M, Jin G, Oklu R, Albadawi H, Imam AM, Jepsen CH, Hwabejire JO, Ostrowski SR, Johansson PI, Rasmussen LS, Alam HB (2013) Fresh-frozen plasma resuscitation after traumatic brain injury and shock attenuates extracellular nucleosome levels and deoxyribonuclease 1 depletion. Surgery 154:197–205. doi:10.1016/j.surg.2013.04.002

    Article  PubMed  Google Scholar 

  44. Singh RK, Liang D, Gajjalaiahvari UR, Kabbaj M-HM, Paik J, Gunjan A (2010) Excess histone levels mediate cytotoxicity via multiple mechanisms. Cell Cycle Georget Tex 9:4236–4244

    Article  CAS  Google Scholar 

  45. Staynov DZ (2008) DNase I footprinting of the nucleosome in whole nuclei. Biochem Biophys Res Commun 372:226–229. doi:10.1016/j.bbrc.2008.05.024

    Article  CAS  PubMed  Google Scholar 

  46. Stephan F, Marsman G, Bakker LM, Bulder I, Stavenuiter F, Aarden LA, Zeerleder S (2013) Cooperation of factor VII-activating protease and serum deoxyribonuclease I in release of nucleosomes from necrotic cells. Arthritis Rheum 66(3):686–693. doi:10.1002/art.38265

    Article  Google Scholar 

  47. Tsukumo S-I, Yasutomo K (2004) DNaseI in pathogenesis of systemic lupus erythematosus. Clin Immunol Orlando Fla 113:14–18. doi:10.1016/j.clim.2004.05.009

    Article  CAS  Google Scholar 

  48. Vogel B, Frantz S (2014) Determination of DNase activity by degradation of ethidium bromide-DNA complexes using a fluorescence plate reader. Anal Biochem. doi:10.1016/j.ab.2014.11.013

    PubMed  Google Scholar 

  49. Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT (2011) Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol Baltim Md 1950 187:2626–2631. doi:10.4049/jimmunol.1003930

    CAS  Google Scholar 

  50. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15:1318–1321. doi:10.1038/nm.2053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Zykova SN, Tveita AA, Rekvig OP (2010) Renal Dnase1 enzyme activity and protein expression is selectively shut down in murine and human membranoproliferative lupus nephritis. PLoS One. doi:10.1371/journal.pone.0012096

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Charlotte Dienesch, Sandra Umbenhauer, and Hanna Siebert for technical assistance, Nicola Jones for critically reading the manuscript and Silvana Olivares-Florez for providing us with neonatal rat ventricular myocytes. This work was supported by a grant of the German Bundesministerium für Bildung und Forschung (BMBF01 EO1004) (G.E., S.F.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Vogel.

Additional information

B. Vogel and H. Shinagawa contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, B., Shinagawa, H., Hofmann, U. et al. Acute DNase1 treatment improves left ventricular remodeling after myocardial infarction by disruption of free chromatin. Basic Res Cardiol 110, 15 (2015). https://doi.org/10.1007/s00395-015-0472-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0472-y

Keywords

Navigation