Skip to main content
Log in

Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Acute myocardial infarction (AMI) causes sterile inflammation, which exacerbates tissue injury. Elevated levels of circulating mitochondrial DNA (mtDNA) have been associated with AMI. We hypothesized that mtDNA triggers an innate immune response via TLR9 and NF-κB activation, causing cardiomyocyte injury. Murine cardiomyocytes express TLR9 mRNA and protein and were able to internalize fluorescently labeled mouse mtDNA. Incubation of human embryonic kidney cells with serum from AMI patients containing naturally elevated levels of mtDNA induced TLR9-dependent NF-κB activity. This effect was mimicked by isolated mtDNA. mtDNA activated NF-κB in reporter mice both in vivo and in isolated cardiomyocytes. Moreover, incubation of isolated cardiomyocytes with mtDNA induced cell death after 4 and 24 h. Laser confocal microscopy showed that incubation of cardiomyocytes with mtDNA accelerated mitochondrial depolarization induced by reactive oxygen species. In contrast to mtDNA, isolated total DNA did not activate NF-κB nor induce cell death. In conclusion, mtDNA can induce TLR9-dependent NF-κB activation in reporter cells and activate NF-κB in cardiomyocytes. In cardiomyocytes, mtDNA causes mitochondrial dysfunction and death. Endogenous mtDNA in the extracellular space is a danger signal with direct detrimental effects on cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bliksoen M, Mariero LH, Ohm IK, Haugen F, Yndestad A, Solheim S, Seljeflot I, Ranheim T, Andersen GO, Aukrust P, Valen G, Vinge LE (2012) Increased circulating mitochondrial DNA after myocardial infarction. Int J Cardiol 158:132–134. doi:10.1016/j.ijcard.2012.04.047

    Article  PubMed  Google Scholar 

  2. Boehm O, Markowski P, van der Giet M, Gielen V, Kokalova A, Brill C, Hoeft A, Baumgarten G, Meyer R, Knuefermann P (2013) In vivo TLR9 inhibition attenuates CpG-induced myocardial dysfunction. Mediators Inflamm 2013:217297. doi:10.1155/2013/217297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR (2006) Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 72:384–393. doi:10.1016/j.cardiores.2006.09.011

    Article  CAS  PubMed  Google Scholar 

  4. Bulicheva N, Fidelina O, Mkrtumova N, Neverova M, Bogush A, Bogush M, Roginko O, Veiko N (2008) Effect of cell-free DNA of patients with cardiomyopathy and rDNA on the frequency of contraction of electrically paced neonatal rat ventricular myocytes in culture. Ann N Y Acad Sci 1137:273–277. doi:10.1196/annals.1448.023

    Article  CAS  PubMed  Google Scholar 

  5. Carlsen H, Moskaug JO, Fromm SH, Blomhoff R (2002) In vivo imaging of NF-kappa B activity. J Immunol 168:1441–1446. doi:10.4049/jimmunol.168.3.1441

    Article  CAS  PubMed  Google Scholar 

  6. Chuang TH, Ulevitch RJ (2000) Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 11:372–378

    CAS  PubMed  Google Scholar 

  7. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 75:995–1000. doi:10.1189/jlb.0703328

    Article  CAS  PubMed  Google Scholar 

  8. Doevendans PA, Daemen MJ, de Muinck ED, Smits JF (1998) Cardiovascular phenotyping in mice. Cardiovasc Res 39:34–49. doi:10.1016/S0008-6363(98)00073-X

    Article  CAS  PubMed  Google Scholar 

  9. Dohlen G, Carlsen H, Blomhoff R, Thaulow E, Saugstad OD (2005) Reoxygenation of hypoxic mice with 100 % oxygen induces brain nuclear factor-kappa B. Pediatr Res 58:941–945. doi:10.1203/01.pdr.0000182595.62545.ee

    Article  CAS  PubMed  Google Scholar 

  10. Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP, Chapman HA, Barton GM (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–662. doi:10.1038/nature07405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265. doi:10.1038/nrcardio.2014.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gustafsson AB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77:334–343. doi:10.1093/cvr/cvm005

    Article  CAS  PubMed  Google Scholar 

  13. Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV (2003) Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther 5:R234–R240. doi:10.1186/ar787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi:10.1161/circresaha.116.305348

    Article  CAS  PubMed  Google Scholar 

  15. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi:10.1016/s0140-6736(14)60107-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johansen D, Sanden E, Hagve M, Chu X, Sundset R, Ytrehus K (2011) Heptanol triggers cardioprotection via mitochondrial mechanisms and mitochondrial potassium channel opening in rat hearts. Acta Physiol (Oxf) 201:435–444. doi:10.1111/j.1748-1716.2010.02221.x

    Article  CAS  Google Scholar 

  17. Kariko K, Weissman D, Welsh FA (2004) Inhibition of toll-like receptor and cytokine signaling–a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab 24:1288–1304. doi:10.1097/01.wcb.0000145666.68576.71

    Article  CAS  PubMed  Google Scholar 

  18. Kelly RD, Mahmud A, McKenzie M, Trounce IA, St John JC (2012) Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res 40:10124–10138. doi:10.1093/nar/gks770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knuefermann P, Schwederski M, Velten M, Krings P, Ehrentraut H, Rudiger M, Boehm O, Fink K, Dreiner U, Grohe C, Hoeft A, Baumgarten G, Koch A, Zacharowski K, Meyer R (2008) Bacterial DNA induces myocardial inflammation and reduces cardiomyocyte contractility: role of toll-like receptor 9. Cardiovasc Res 78:26–35. doi:10.1093/cvr/cvn011

    Article  CAS  PubMed  Google Scholar 

  20. Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8:772–779. doi:10.1038/ni1479

    Article  CAS  PubMed  Google Scholar 

  21. Lei P, Baysa A, Nebb HI, Valen G, Skomedal T, Osnes JB, Yang Z, Haugen F (2013) Activation of Liver X receptors in the heart leads to accumulation of intracellular lipids and attenuation of ischemia-reperfusion injury. Basic Res Cardiol 108:323. doi:10.1007/s00395-012-0323-z

    Article  PubMed  Google Scholar 

  22. Leifer CA, Rose WA 2nd, Botelho F (2013) Traditional biochemical assays for studying toll-like receptor 9. J Immunoassay Immunochem 34:1–15. doi:10.1080/15321819.2012.666222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin L, Knowlton AA (2014) Innate immunity and cardiomyocytes in ischemic heart disease. Life Sci 100:1–8. doi:10.1016/j.lfs.2014.01.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lohner R, Schwederski M, Narath C, Klein J, Duerr GD, Torno A, Knuefermann P, Hoeft A, Baumgarten G, Meyer R, Boehm O (2013) Toll-like receptor 9 promotes cardiac inflammation and heart failure during polymicrobial sepsis. Mediators Inflamm 2013:261049. doi:10.1155/2013/261049

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mathur S, Walley KR, Boyd JH (2011) The Toll-like receptor 9 ligand CPG-C attenuates acute inflammatory cardiac dysfunction. Shock 36:478–483. doi:10.1097/SHK.0b013e31822d6442

    Article  CAS  PubMed  Google Scholar 

  26. Matzinger P (2007) Friendly and dangerous signals: is the tissue in control? Nat Immunol 8:11–13. doi:10.1038/ni0107-11

    Article  CAS  PubMed  Google Scholar 

  27. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–366. doi:10.1126/science.1195491

    Article  CAS  PubMed  Google Scholar 

  28. McKelvey KJ, Highton J, Hessian PA (2011) Cell-specific expression of TLR9 isoforms in inflammation. J Autoimmun 36:76–86. doi:10.1016/j.jaut.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  29. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28:886–892. doi:10.1248/bpb.28.886

    Article  CAS  PubMed  Google Scholar 

  30. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–255. doi:10.1038/nature10992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pollack Y, Kasir J, Shemer R, Metzger S, Szyf M (1984) Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res 12:4811–4824. doi:10.1093/nar/12.12.4811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Riad A, Westermann D, Escher F, Becher PM, Savvatis K, Lettau O, Heimesaat MM, Bereswill S, Volk HD, Schultheiss HP, Tschope C (2010) Myeloid differentiation factor-88 contributes to TLR9-mediated modulation of acute coxsackievirus B3-induced myocarditis in vivo. Am J Physiol Heart Circ Physiol 298:H2024–H2031. doi:10.1152/ajpheart.01188.2009

    Article  CAS  PubMed  Google Scholar 

  33. Ries M, Schuster P, Thomann S, Donhauser N, Vollmer J, Schmidt B (2013) Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J Leukoc Biol 94:123–135. doi:10.1189/jlb.0612278

    Article  CAS  PubMed  Google Scholar 

  34. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  PubMed  Google Scholar 

  35. Shintani Y, Kapoor A, Kaneko M, Smolenski RT, D’Acquisto F, Coppen SR, Harada-Shoji N, Lee HJ, Thiemermann C, Takashima S, Yashiro K, Suzuki K (2013) TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc Natl Acad Sci USA 110:5109–5114. doi:10.1073/pnas.1219243110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Solheim S, Grogaard HK, Hoffmann P, Arnesen H, Seljeflot I (2008) Inflammatory responses after percutaneous coronary intervention in patients with acute myocardial infarction or stable angina pectoris. Scand J Clin Lab Inv 68:555–562. doi:10.1080/00365510701884584

    Article  CAS  Google Scholar 

  37. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. doi:10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  38. Valen G (2011) Innate immunity and remodelling. Heart Fail Rev 16:71–78. doi:10.1007/s10741-010-9187-1

    Article  CAS  PubMed  Google Scholar 

  39. Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314. doi:10.1016/S0735-1097(01)01377-8

    Article  CAS  PubMed  Google Scholar 

  40. Valeur HS, Valen G (2009) Innate immunity and myocardial adaptation to ischemia. Basic Res Cardiol 104:22–32. doi:10.1007/s00395-008-0756-6

    Article  CAS  PubMed  Google Scholar 

  41. Velten M, Duerr GD, Pessies T, Schild J, Lohner R, Mersmann J, Dewald O, Zacharowski K, Klaschik S, Hilbert T, Hoeft A, Baumgarten G, Meyer R, Boehm O, Knuefermann P (2012) Priming with synthetic oligonucleotides attenuates pressure overload-induced inflammation and cardiac hypertrophy in mice. Cardiovasc Res 96:422–432. doi:10.1093/cvr/cvs280

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Jiang W, Ding G, Cao H, Lu Y, Luo P, Zhou H, Zheng J (2007) The newly identified CpG-N ODN208 protects mice from challenge with CpG-S ODN by decreasing TNF-alpha release. Int Immunopharmacol 7:646–655. doi:10.1016/j.intimp.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  43. Yang XM, Cui L, White J, Kuck J, Ruchko MV, Wilson GL, Alexeyev M, Gillespie MN, Downey JM, Cohen MV (2015) Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion. Basic Res Cardiol 110:3. doi:10.1007/s00395-014-0459-0

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi:10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Q, Itagaki K, Hauser CJ (2010) Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock 34:55–59. doi:10.1097/SHK.0b013e3181cd8c08

    Article  PubMed  Google Scholar 

  46. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107. doi:10.1038/nature08780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517. doi:10.1016/j.bbabio.2006.04.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Harald Carlsen and Jan Øivind Moskaug, Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, kindly provided NF-κB luciferase reporter mice. The authors acknowledge the expertise of Gerbrand Koster for technical advice (NorMIC imaging cluster, Department of Biosciences, University of Oslo) and technical assistance was expertly performed by Torun Flatebø and Sowmya Sanjeevini.

Funding

This work was supported by the Norwegian Health Association, UNIFOR, the Norwegian Research Council, the University of Oslo, and the Novo Nordisk Foundation. Marte Bliksøen was supported by a grant from South-Eastern Regional Health Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kåre-Olav Stensløkken.

Ethics declarations

Conflict of interest

None.

Additional information

Professor Guro Valen passed away 26 September 2014.

G. Valen and K.-O. Stensløkken have shared last authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2016_553_MOESM1_ESM.tif

Supplementary material 1 (TIFF 1029 kb) Figure S1 legend: 1 % agarose gel with SYBR Safe DNA gel stain (Invitrogen) showing DNA isolated from murine liver or from mitochondrial extracts from murine liver, eluted in buffer and subjected to sonication for 2 × 30 s or sham treatment with the same sample handling but without sonication. Arrow: heavy DNA band present in unsonicated mitochondrial DNA sample (mtDNA), which is absent from the sonicated samples (mtDNAs), indicating DNA fragmentation. There is evidence of some DNA degradation in the non-sonicated samples, but the mtDNAs sample shows denser smearing in the ~ 300 bp region. mtDNA (mitochondrial DNA), mtDNAs (sonicated mtDNA), tDNA (total DNA), tDNAs (sonicated total DNA) and 1 kb ladder

395_2016_553_MOESM2_ESM.tif

Supplementary material 2 (TIFF 505 kb) Figure S2 legend: Figure shows remaining primary mouse cardiomyocytes after different DNA agonist treatment for 4 and 24 h. There is a decrease in the number of viable cells after 24 h in control, but the number of cells lost is significantly higher in the cardiomyocytes treated either with mtDNA (B) or CpGC (D). Statistical differences was tested with Wilcoxon matched-pairs signed rank test (* p < 0.05)

395_2016_553_MOESM3_ESM.avi

Supplementary material 3 (AVI 43012 kb) Video S3 The video shows a confocal Z-stack with mouse cardiomyocytes exposed to Cy-5 tagged mtDNA. The mtDNA is present in the peri-nuclear area, but also in the cytosol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bliksøen, M., Mariero, L.H., Torp, M.K. et al. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol 111, 42 (2016). https://doi.org/10.1007/s00395-016-0553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0553-6

Keywords

Navigation