Skip to main content
Log in

Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Exercise is an efficient strategy for myocardial protection against ischemia–reperfusion (IR) injury. Although endothelial nitric oxide synthase (eNOS) is phosphorylated and activated during exercise, its role in exercise-induced cardioprotection remains unknown. This study investigated whether modulation of eNOS activation during IR could participate in the exercise-induced cardioprotection against IR injury. Hearts isolated from sedentary or exercised rats (5 weeks training) were perfused with a Langendorff apparatus and IR performed in the presence or absence of NOS inhibitors [N-nitro-l-arginine methyl ester, l-NAME or N5-(1-iminoethyl)-l-ornithine, l-NIO] or tetrahydrobiopterin (BH4). Exercise training protected hearts against IR injury and this effect was abolished by l-NAME or by l-NIO treatment, indicating that exercise-induced cardioprotection is eNOS dependent. However, a strong reduction of eNOS phosphorylation at Ser1177 (eNOS-PSer1177) and of eNOS coupling during early reperfusion was observed in hearts from exercised rats (which showed higher eNOS-PSer1177 and eNOS dimerization at baseline) in comparison to sedentary rats. Despite eNOS uncoupling, exercised hearts had more S-nitrosylated proteins after early reperfusion and also less nitro-oxidative stress, indexed by lower malondialdehyde content and protein nitrotyrosination compared to sedentary hearts. Moreover, in exercised hearts, stabilization of eNOS dimers by BH4 treatment increased nitro-oxidative stress and then abolished the exercise-induced cardioprotection, indicating that eNOS uncoupling during IR is required for exercise-induced myocardial cardioprotection. Based on these results, we hypothesize that in the hearts of exercised animals, eNOS uncoupling associated with the improved myocardial antioxidant capacity prevents excessive NO synthesis and limits the reaction between NO and O2 ·− to form peroxynitrite (ONOO), which is cytotoxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. André L, Gouzi F, Thireau J, Meyer G, Boissiere J, Delage M, Abdellaoui A, Feillet-Coudray C, Fouret G, Cristol JP, Lacampagne A, Obert P, Reboul C, Fauconnier J, Hayot M, Richard S, Cazorla O (2011) Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress. Basic Res Cardiol 106:1235–1246. doi:10.1007/s00395-011-0211-y

    Article  PubMed  Google Scholar 

  2. Aragon JP, Condit ME, Bhushan S, Predmore BL, Patel SS, Grinsfelder DB, Gundewar S, Jha S, Calvert JW, Barouch LA, Lavu M, Wright HM, Lefer DJ (2011) Beta3-adrenoreceptor stimulation ameliorates myocardial ischemia–reperfusion injury via endothelial nitric oxide synthase and neuronal nitric oxide synthase activation. J Am Coll Cardiol 58:2683–2691. doi:10.1016/j.jacc.2011.09.033

    Article  PubMed  CAS  Google Scholar 

  3. Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534. doi:10.1152/physrev.00042.2007

    Article  PubMed  CAS  Google Scholar 

  4. Brunner F, Maier R, Andrew P, Wolkart G, Zechner R, Mayer B (2003) Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Cardiovasc Res 57:55–62. doi:10.1016/S0008-6363(02)00649-1

    Article  PubMed  CAS  Google Scholar 

  5. Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, Sindler AL, Gundewar S, Seals DR, Barouch LA, Lefer DJ (2011) Exercise protects against myocardial ischemia–reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res 108:1448–1458. doi:10.1161/CIRCRESAHA.111.241117

    Article  PubMed  CAS  Google Scholar 

  6. Chen CA, Druhan LJ, Varadharaj S, Chen YR, Zweier JL (2008) Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem 283:27038–27047. doi:10.1074/jbc.M802269200

    Article  PubMed  CAS  Google Scholar 

  7. Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cocheme HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RAJ, Krieg T, Brookes PS, Murphy MP (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19:753–759. doi:10.1038/nm.3212

    Article  PubMed  CAS  Google Scholar 

  8. Crabtree MJ, Tatham AL, Al-Wakeel Y, Warrick N, Hale AB, Cai S, Channon KM, Alp NJ (2009) Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem 284:1136–1144. doi:10.1074/jbc.M805403200

    Article  PubMed  CAS  Google Scholar 

  9. de Waard MC, van Haperen R, Soullie T, Tempel D, de Crom R, Duncker DJ (2010) Beneficial effects of exercise training after myocardial infarction require full eNOS expression. J Mol Cell Cardiol 48:1041–1049. doi:10.1016/j.yjmcc.2010.02.005

    Article  PubMed  Google Scholar 

  10. Demirel HA, Powers SK, Zergeroglu MA, Shanely RA, Hamilton K, Coombes J, Naito H (2001) Short-term exercise improves myocardial tolerance to in vivo ischemia–reperfusion in the rat. J Appl Physiol 91:2205–2212

    PubMed  CAS  Google Scholar 

  11. Dumitrescu C, Biondi R, Xia Y, Cardounel AJ, Druhan LJ, Ambrosio G, Zweier JL (2007) Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4. Proc Natl Acad Sci USA 104:15081–15086. doi:10.1073/pnas.0702986104

    Article  PubMed  CAS  Google Scholar 

  12. Elrod JW, Greer JJ, Bryan NS, Langston W, Szot JF, Gebregzlabher H, Janssens S, Feelisch M, Lefer DJ (2006) Cardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia–reperfusion injury. Arterioscler Thromb Vasc Biol 26:1517–1523. doi:10.1161/01.ATV.0000224324.52466.e6

    Article  PubMed  CAS  Google Scholar 

  13. Farah C, Meyer G, Andre L, Boissiere J, Gayrard S, Cazorla O, Richard S, Boucher F, Tanguy S, Obert P, Reboul C (2010) Moderate exercise prevents impaired Ca2+ handling in heart of CO-exposed rat: implication for sensitivity to ischemia–reperfusion. Am J Physiol Heart Circ Physiol 299:H2076–H2081. doi:10.1152/ajpheart.0 0835.2010

    Article  PubMed  CAS  Google Scholar 

  14. Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia–reperfusion injury and preconditioning. Br J Pharmacol 138:532–543. doi:10.1038/sj.bjp.0705080

    Article  PubMed  CAS  Google Scholar 

  15. Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459:793–806. doi:10.1007/s00424-009-0767-7

    Article  PubMed  CAS  Google Scholar 

  16. Frantz S, Adamek A, Fraccarollo D, Tillmanns J, Widder JD, Dienesch C, Schafer A, Podolskaya A, Held M, Ruetten H, Ertl G, Bauersachs J (2009) The eNOS enhancer AVE 9488: a novel cardioprotectant against ischemia reperfusion injury. Basic Res Cardiol 104:773–779. doi:10.1007/s00395-009-0041-3

    Article  PubMed  CAS  Google Scholar 

  17. French JP, Hamilton KL, Quindry JC, Lee Y, Upchurch PA, Powers SK (2008) Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. FASEB J 22:2862–2871. doi:10.1096/fj.07-102541

    Article  PubMed  CAS  Google Scholar 

  18. French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KK, Powers SK (2006) Ischemia–reperfusion-induced calpain activation and SERCA-2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol Heart Circ Physiol 290:H128–H136. doi:10.1152/ajpheart.00739.2005

    Article  PubMed  CAS  Google Scholar 

  19. Goret L, Reboul C, Tanguy S, Dauzat M, Obert P (2005) Training does not affect the alteration in pulmonary artery vasoreactivity in pulmonary hypertensive rats. Eur J Pharmacol 527:121–128. doi:10.1016/j.ejphar.2005.10.013

    Article  PubMed  CAS  Google Scholar 

  20. Guo Y, Sanganalmath SK, Wu W, Zhu X, Huang Y, Tan W, Ildstad ST, Li Q, Bolli R (2012) Identification of inducible nitric oxide synthase in peripheral blood cells as a mediator of myocardial ischemia/reperfusion injury. Basic Res Cardiol 107:253. doi:10.1007/s00395-012-0253-9

    Article  PubMed  Google Scholar 

  21. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158. doi:10.1161/01.CIR.0000074229.93804.5C

    Article  PubMed  CAS  Google Scholar 

  22. Hamid SA, Totzeck M, Drexhage C, Thompson I, Fowkes RC, Rassaf T, Baxter GF (2010) Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res Cardiol 105:257–266. doi:10.1007/s00395-009-0058-7

    Article  PubMed  CAS  Google Scholar 

  23. Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK (2003) Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 34:800–809. doi:10.1016/S0891-5849(02)01431-4

    Article  PubMed  CAS  Google Scholar 

  24. Heusch G (2011) Beta3-adrenoceptor activation just says NO to myocardial reperfusion injury. J Am Coll Cardiol 58:2692–2694. doi:10.1016/j.jacc.2011.09.034

    Article  PubMed  CAS  Google Scholar 

  25. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  26. Kojima S, Ona S, Iizuka I, Arai T, Mori H, Kubota K (1995) Antioxidative activity of 5,6,7,8-tetrahydrobiopterin and its inhibitory effect on paraquat-induced cell toxicity in cultured rat hepatocytes. Free Radic Res 23:419–430. doi:10.3109/10715769509065263

    Article  PubMed  CAS  Google Scholar 

  27. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209. doi:10.1172/JCI200314172

    PubMed  CAS  Google Scholar 

  28. Lauer N, Suvorava T, Ruther U, Jacob R, Meyer W, Harrison DG, Kojda G (2005) Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase. Cardiovasc Res 65:254–262. doi:10.1016/j.cardiores.2004.09.010

    Article  PubMed  CAS  Google Scholar 

  29. Li Q, Guo Y, Wu WJ, Ou Q, Zhu X, Tan W, Yuan F, Chen N, Dawn B, Luo L, O’Brien E, Bolli R (2011) Gene transfer as a strategy to achieve permanent cardioprotection I: rAAV-mediated gene therapy with inducible nitric oxide synthase limits infarct size 1 year later without adverse functional consequences. Basic Res Cardiol 106:1355–1366. doi:10.1007/s00395-011-0207-7

    Article  PubMed  CAS  Google Scholar 

  30. Martin C, Schulz R, Post H, Boengler K, Kelm M, Kleinbongard P, Gres P, Skyschally A, Konietzka I, Heusch G (2007) Microdialysis-based analysis of interstitial NO in situ: NO synthase-independent NO formation during myocardial ischemia. Cardiovasc Res 74:46–55. doi:10.1016/j.cardiores.2006.12.020

    Article  PubMed  CAS  Google Scholar 

  31. Masano T, Kawashima S, Toh R, Satomi-Kobayashi S, Shinohara M, Takaya T, Sasaki N, Takeda M, Tawa H, Yamashita T, Yokoyama M, Hirata K (2008) Beneficial effects of exogenous tetrahydrobiopterin on left ventricular remodeling after myocardial infarction in rats: the possible role of oxidative stress caused by uncoupled endothelial nitric oxide synthase. Circ J 72:1512–1519. doi:10.1253/circj.CJ-08-0072

    Article  PubMed  CAS  Google Scholar 

  32. Matsuura C, Brunini TM, Carvalho LC, Resende AC, Carvalho JJ, de Castro JP, Mendes-Ribeiro AC (2010) Exercise training in doxorubicin-induced heart failure: effects on the l-arginine-NO pathway and vascular reactivity. J Am Soc Hypertens 4:7–13. doi:10.1016/j.jash.2009.10.005

    Article  PubMed  CAS  Google Scholar 

  33. McAllister RM, Newcomer SC, Laughlin MH (2008) Vascular nitric oxide: effects of exercise training in animals. Appl Physiol Nutr Metab 33:173–178. doi:10.1139/H07-146

    Article  PubMed  CAS  Google Scholar 

  34. Moens AL, Kass DA (2006) Tetrahydrobiopterin and cardiovascular disease. Arterioscler Thromb Vasc Biol 26:2439–2444. doi:10.1161/01.ATV.0000243924.00970.cb

    Article  PubMed  CAS  Google Scholar 

  35. Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, Miller KL, Vandegaer K, Bedja D, Gabrielson KL, Paolocci N, Kass DA, Barouch LA (2012) Cardioprotective effect of beta-3 adrenergic receptor agonism: role of neuronal nitric oxide synthase. J Am Coll Cardiol 59:1979–1987. doi:10.1016/j.jacc.2011.12.046

    Article  PubMed  CAS  Google Scholar 

  36. Obal D, Dai S, Keith R, Dimova N, Kingery J, Zheng YT, Zweier J, Velayutham M, Prabhu SD, Li Q, Conklin D, Yang D, Bhatnagar A, Bolli R, Rokosh G (2012) Cardiomyocyte-restricted overexpression of extracellular superoxide dismutase increases nitric oxide bioavailability and reduces infarct size after ischemia/reperfusion. Basic Res Cardiol 107:305. doi:10.1007/s00395-012-0305-1

    Article  PubMed  Google Scholar 

  37. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. doi:10.1152/physrev.00029.2006

    Article  PubMed  CAS  Google Scholar 

  38. Pagliaro P, Moro F, Tullio F, Perrelli MG, Penna C (2011) Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. Antioxid Redox Signal 14:833–850. doi:10.1089/ars2010.3245

    Article  PubMed  CAS  Google Scholar 

  39. Powers SK, Demirel HA, Vincent HK, Coombes JS, Naito H, Hamilton KL, Shanely RA, Jessup J (1998) Exercise training improves myocardial tolerance to in vivo ischemia–reperfusion in the rat. Am J Physiol 275:R1468–R1477

    PubMed  CAS  Google Scholar 

  40. Powers SK, Quindry JC, Kavazis AN (2008) Exercise-induced cardioprotection against myocardial ischemia–reperfusion injury. Free Radic Biol Med 44:193–201. doi:10.1016/j.freeradbiomed.2007.02.006

    Article  PubMed  CAS  Google Scholar 

  41. Ramires PR, Ji LL (2001) Glutathione supplementation and training increases myocardial resistance to ischemia–reperfusion in vivo. Am J Physiol Heart Circ Physiol 281:H679–H688

    PubMed  CAS  Google Scholar 

  42. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413. doi:10.1016/j.cardiores.2003.09.019

    Article  PubMed  CAS  Google Scholar 

  43. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74:349–353. doi:10.1161/01.RES.74.2.349

    Article  PubMed  CAS  Google Scholar 

  44. Sindler AL, Delp MD, Reyes R, Wu G, Muller-Delp JM (2009) Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol 587:3885–3897. doi:10.1113/jphysiol.2009.172221

    Article  PubMed  CAS  Google Scholar 

  45. Sun J, Aponte AM, Kohr MJ, Tong G, Steenbergen C, Murphy E (2013) Essential role of nitric oxide in acute ischemic preconditioning: S-nitros(yl)ation versus sGC/cGMP/PKG signaling? Free Radic Biol Med 54:105–112. doi:10.1016/j.freeradbiomed.2012.09.005

    Article  PubMed  CAS  Google Scholar 

  46. Szelid Z, Pokreisz P, Liu X, Vermeersch P, Marsboom G, Gillijns H, Pellens M, Verbeken E, Van de Werf F, Collen D, Janssens SP (2010) Cardioselective nitric oxide synthase 3 gene transfer protects against myocardial reperfusion injury. Basic Res Cardiol 105:169–179. doi:10.1007/s00395-009-0077-4

    Article  PubMed  CAS  Google Scholar 

  47. Takano H, Tang XL, Qiu Y, Guo Y, French BA, Bolli R (1998) Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res 83:73–84. doi:10.1161/01.RES.83.1.73

    Article  PubMed  CAS  Google Scholar 

  48. Tiefenbacher CP, Bleeke T, Vahl C, Amann K, Vogt A, Kubler W (2000) Endothelial dysfunction of coronary resistance arteries is improved by tetrahydrobiopterin in atherosclerosis. Circulation 102:2172–2179. doi:10.1161/01.CIR.102.18.2172

    Article  PubMed  CAS  Google Scholar 

  49. Verma S, Maitland A, Weisel RD, Fedak PW, Pomroy NC, Li SH, Mickle DA, Li RK, Rao V (2002) Novel cardioprotective effects of tetrahydrobiopterin after anoxia and reoxygenation: identifying cellular targets for pharmacologic manipulation. J Thorac Cardiovasc Surg 123:1074–1083. doi:10.1067/mtc.2002.121687

    Article  PubMed  CAS  Google Scholar 

  50. Wisloff U, Loennechen JP, Currie S, Smith GL, Ellingsen O (2002) Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res 54:162–174. doi:10.1016/S0008-6363(01)00565-X

    Article  PubMed  CAS  Google Scholar 

  51. Xia Y (2007) Superoxide generation from nitric oxide synthases. Antioxid Redox Signal 9:1773–1778. doi:10.1089/ars2007.1733

    Article  PubMed  CAS  Google Scholar 

  52. Yamashiro S, Noguchi K, Matsuzaki T, Miyagi K, Nakasone J, Sakanashi M, Koja K (2002) Beneficial effect of tetrahydrobiopterin on ischemia–reperfusion injury in isolated perfused rat hearts. J Thorac Cardiovasc Surg 124:775–784. doi:10.1067/mtc.2002.124393

    Article  PubMed  CAS  Google Scholar 

  53. Zhang QJ, McMillin SL, Tanner JM, Palionyte M, Abel ED, Symons JD (2009) Endothelial nitric oxide synthase phosphorylation in treadmill-running mice: role of vascular signalling kinases. J Physiol 587:3911–3920. doi:10.1113/jphysiol.2009.172916

    Article  PubMed  CAS  Google Scholar 

  54. Zhou M, Widmer RJ, Xie W, Jimmy Widmer A, Miller MW, Schroeder F, Parker JL, Heaps CL (2010) Effects of exercise training on cellular mechanisms of endothelial nitric oxide synthase regulation in coronary arteries after chronic occlusion. Am J Physiol Heart Circ Physiol 298:H1857–H1869. doi:10.1152/ajpheart.00754.2009

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Reboul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farah, C., Kleindienst, A., Bolea, G. et al. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol 108, 389 (2013). https://doi.org/10.1007/s00395-013-0389-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0389-2

Keywords

Navigation