Skip to main content

Advertisement

Log in

Effect of Exercise Training and l-arginine on Oxidative Stress and Left Ventricular Function in the Post-ischemic Failing Rat Heart

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the effect of exercise training (ET) and l-arginine on oxidative stress and ventricular function in rat with myocardial infarction (MI). Four weeks after the surgical procedures, 40 Wistar male rats were randomized to the following groups: MI-sedentary (Sed); MI-exercise (Ex); MI-sedentary + l-arginine (Sed + LA); and MI-exercise + l-arginine (Ex + LA); the rats were subjected to aerobic training in the form of treadmill running. Rats in the l-arginine-treated groups drank water containing 4 % l-arginine. Before and after the training program, all subjects underwent resting echocardiography. Catalase (CAT) glutathione peroxidase (GPx), malondialdehyde (MDA) and myeloperoxidase (MPO) were measured. Cardiac output, stroke volume and fractional shortening in Ex and Ex + LA groups significantly increased in comparison with the Sed group. Cardiac systolic function indices in Ex + LA group were significantly greater than Ex group. Also, GPx activity and MDA, respectively, increased and decreased in response to ET, but no change was observed in MPO and CAT. These results suggest that ET increased LV function by decreasing oxidative stress and increasing antioxidant defense system in rats with MI. In addition in response to training, l-arginine appears to have additive effect on cardiac function, but have no effect on oxidative stress indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, D. A., Jew, K. N., Sparagna, G. C., Musch, T. I., & Moore, R. L. (2003). Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. Journal of Applied Physiology, 95, 2510–2518.

    Article  PubMed  Google Scholar 

  2. Takimoto, E., & Kass, D. A. (2007). Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension, 49, 241–248.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, M., & Shah, A. M. (2007). Role of reactive oxygen species in myocardial remodeling. Current Heart Failure Reports, 4, 26–30.

    Article  CAS  PubMed  Google Scholar 

  4. Evran, B., Karpuzoğlu, H., Develi, S., Kalaz, E. B., Soluk-Tekkeşin, M., Olgaç, V., et al. (2014). Effects of carnosine on prooxidant–antioxidant status in heart tissue, plasma and erythrocytes of rats with isoproterenol-induced myocardial infarction. Pharmacological Reports, 66, 81–86.

    Article  CAS  PubMed  Google Scholar 

  5. Shiomi, T., Tsutsui, H., Matsusaka, H., Murakami, K., Hayashidani, S., Ikeuchi, M., et al. (2004). Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation, 109, 544–549.

    Article  CAS  PubMed  Google Scholar 

  6. Xu, X., Zhao, W., Lao, S., Wilson, B. S., Erikson, J. M., & Zhang, J. Q. (2010). Effects of exercise and l-arginine on ventricular remodeling and oxidative stress. Medicine and Science in Sports and Exercise, 42, 346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hill, M. F., & Singal, P. K. (1996). Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. The American Journal of Pathology, 148, 291.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fukui, T., Yoshiyama, M., Hanatani, A., Omura, T., Yoshikawa, J., & Abe, Y. (2001). Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochemical and Biophysical Research Communications, 281, 1200–1206.

    Article  CAS  PubMed  Google Scholar 

  9. Leeuwenburgh, C., Hansen, P. A., Holloszy, J. O., & Heinecke, J. W. (1999). Hydroxyl radical generation during exercise increases mitochondrial protein oxidation and levels of urinary dityrosine. Free Radical Biology and Medicine, 27, 186–192.

    Article  CAS  PubMed  Google Scholar 

  10. Ahmadiasl, N., Soufi, F. G., Alipour, M., Bonyadi, M., Sheikhzadeh, F., Vatankhah, A., et al. (2007). Effects of age increment and 36-week exercise training on antioxidant enzymes and apoptosis in rat heart tissue. Journal of Sports Science and Medicine, 6, 243.

    PubMed  PubMed Central  Google Scholar 

  11. Rastaldo, R., Pagliaro, P., Cappello, S., Penna, C., Mancardi, D., Westerhof, N., & Losano, G. (2007). Nitric oxide and cardiac function. Life Sciences, 81, 779–793.

    Article  CAS  PubMed  Google Scholar 

  12. Mendes-Ribeiro, A. C., Mann, G. E., de Meirelles, L. R., Moss, M. B., Matsuura, C., & Brunini, T. M. C. (2009). The role of exercise on l-arginine nitric oxide pathway in chronic heart failure. The Open Biochemistry Journal, 3, 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, W.-T., Yang, S.-C., Chen, K.-T., Huang, C.-C., & Lee, N.-Y. (2005). Protective effects of l-arginine on pulmonary oxidative stress and anti-oxidant defenses during exhaustive exercise in rats. Acta Pharmacologica Sinica, 26, 992–999.

    Article  CAS  PubMed  Google Scholar 

  14. Fukahori, M., Ichimori, K., Ishida, H., Nakagawa, H., & Okino, H. (1994). Nitric oxide reversibly suppresses xanthine oxidase activity. Free Radical Research, 21, 203–212.

    Article  CAS  PubMed  Google Scholar 

  15. Linke, A., Adams, V., Schulze, P. C., Erbs, S., Gielen, S., Fiehn, E., et al. (2005). Antioxidative effects of exercise training in patients with chronic heart failure increase in radical scavenger enzyme activity in skeletal muscle. Circulation, 111, 1763–1770.

    Article  CAS  PubMed  Google Scholar 

  16. Jain, M., Liao, R., Ngoy, S., Whittaker, P., Apstein, C. S., & Eberli, F. R. (2000). Angiotensin II receptor blockade attenuates the deleterious effects of exercise training on post-MI ventricular remodelling in rats. Cardiovascular Research, 46, 66–72.

    Article  CAS  PubMed  Google Scholar 

  17. Veiga, E. C. D. A., Portes, L. A., Bocalini, D. S., Antonio, E. L., Santos, A. A. D., Santos, M. H., et al. (2013). Cardiac implications after myocardial infarction in rats previously undergoing physical exercise. Arquivos Brasileiros de Cardiologia, 100, 37–43.

    Article  PubMed  Google Scholar 

  18. Bansal, A., Dai, Q., Chiao, Y. A., Hakala, K. W., Zhang, J. Q., Weintraub, S. T., & Lindsey, M. L. (2010). Proteomic analysis reveals late exercise effects on cardiac remodeling following myocardial infarction. Journal of Proteomics, 73, 2041–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, X., Wan, W., Powers, A. S., Li, J., Ji, L. L., Lao, S., et al. (2008). Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats. Journal of Molecular and Cellular Cardiology, 44, 114–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suzuki, J. (2005). Microvascular angioadaptation after endurance training with l-arginine supplementation in rat heart and hindleg muscles. Experimental Physiology, 90, 763–771.

    Article  CAS  PubMed  Google Scholar 

  21. Briet, F., Keith, M., Leong-Poi, H., Kadakia, A., Aba-Alkhail, K., Giliberto, J.-P., et al. (2008). Triple nutrient supplementation improves survival, infarct size and cardiac function following myocardial infarction in rats. Nutrition, Metabolism and Cardiovascular Diseases, 18, 691–699.

    Article  CAS  PubMed  Google Scholar 

  22. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70, 158–169.

    CAS  PubMed  Google Scholar 

  23. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  PubMed  Google Scholar 

  24. Niehaus, W. G., & Samuelsson, B. (1968). Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. European Journal of Biochemistry, 6, 126–130.

    Article  CAS  PubMed  Google Scholar 

  25. Mullane, K. M., Kraemer, R., & Smith, B. (1985). Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemie myocardium. Journal of Pharmacological Methods, 14, 157–167.

    Article  CAS  PubMed  Google Scholar 

  26. Belcastro, A. N., Arthur, G. D., Albisser, T. A., & Raj, D. A. (1996). Heart, liver, and skeletal muscle myeloperoxidase activity during exercise. Journal of Applied Physiology, 80, 1331–1335.

    CAS  PubMed  Google Scholar 

  27. Huang, C.-C., Huang, C.-C., Lin, T. J., Lin, T.-J., Lu, Y. F., Lu, Y.-F., et al. (2009). Protective effects of l-arginine supplementation against exhaustive exercise-induced oxidative stress in young rat tissues. Chinese Journal of Physiology, 52, 306–315.

    Article  CAS  PubMed  Google Scholar 

  28. Yamashita, N., Hoshida, S., Otsu, K., Asahi, M., Kuzuya, T., & Hori, M. (1999). Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. The Journal of Experimental Medicine, 189, 1699–1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Somani, S. M., Frank, S., & Rybak, L. P. (1995). Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions. Pharmacology, Biochemistry and Behavior, 51, 627–634.

    Article  CAS  PubMed  Google Scholar 

  30. Husain, K., & Hazelrigg, S. R. (2002). Oxidative injury due to chronic nitric oxide synthase inhibition in rat: effect of regular exercise on the heart. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1587, 75–82.

    Article  CAS  Google Scholar 

  31. Powers, S. K., Quindry, J. C., & Kavazis, A. N. (2008). Exercise-induced cardioprotection against myocardial ischemia—reperfusion injury. Free Radical Biology and Medicine, 44, 193–201.

    Article  CAS  PubMed  Google Scholar 

  32. Ramkumar, V., Nie, Z., Rybak, L. P., & Maggirwar, S. B. (1995). Adenosine, antioxidant enzymes and cytoprotection. Trends in Pharmacological Sciences, 16, 283–285.

    Article  CAS  PubMed  Google Scholar 

  33. Finkel, T. (1999). Signal transduction by reactive oxygen species in non-phagocytic cells. Journal of Leukocyte Biology, 65, 337–340.

    CAS  PubMed  Google Scholar 

  34. Sorescu, D., & Griendling, K. K. (2002). Reactive oxygen species, mitochondria, and NAD (P) H oxidases in the development and progression of heart failure. Congestive Heart Failure, 8, 132–140.

    Article  CAS  PubMed  Google Scholar 

  35. Servais, S., Couturier, K., Koubi, H., Rouanet, J. L., Desplanches, D., Sornay-Mayet, M. H., et al. (2003). Effect of voluntary exercise on H2O2 release by subsarcolemmal and intermyofibrillar mitochondria. Free Radical Biology and Medicine, 35, 24–32.

    Article  CAS  PubMed  Google Scholar 

  36. Sen, C. K., & Packer, L. (1996). Antioxidant and redox regulation of gene transcription. The FASEB Journal, 10, 709–720.

    CAS  PubMed  Google Scholar 

  37. Meyer, M., Pahl, H. L., & Baeuerle, P. A. (1994). Regulation of the transcription factors NF-κB and AP-1 by redox changes. Chemico-Biological Interactions, 91, 91–100.

    Article  CAS  PubMed  Google Scholar 

  38. Rubino, A., & Yellon, D. M. (2000). Ischaemic preconditioning of the vasculature: an overlooked phenomenon for protecting the heart? Trends in Pharmacological Sciences, 21, 225–230.

    Article  CAS  PubMed  Google Scholar 

  39. Petry, E., Cruzat, V., Heck, T., Homem, D. B. P, Jr, & Tirapegui, J. (2014). l-glutamine supplementations enhance liver glutamine-glutathione axis and heat shock factor-1 expression in endurance-exercise trained rats. International Journal of sport nutrition and exercise metabolism., 130, 1–26.

    Google Scholar 

  40. Petry, É. R., Cruzat, V. F., Heck, T. G., Leite, J. S. M., de Bittencourt, P. I. H., & Tirapegui, J. (2014). Alanyl-glutamine and glutamine plus alanine supplements improve skeletal redox status in trained rats: involvement of heat shock protein pathways. Life Sciences, 94, 130–136.

    Article  CAS  PubMed  Google Scholar 

  41. de Waard, M. C., van der Velden, J., Boontje, N. M., Dekkers, D. H. W., van Haperen, R., Kuster, D. W. D., et al. (2009). Detrimental effect of combined exercise training and eNOS overexpression on cardiac function after myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology, 296, 1513–1523.

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interests or financial contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Nazem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, K., Nazem, F. & Nazari, A. Effect of Exercise Training and l-arginine on Oxidative Stress and Left Ventricular Function in the Post-ischemic Failing Rat Heart. Cardiovasc Toxicol 16, 122–129 (2016). https://doi.org/10.1007/s12012-015-9319-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9319-x

Keywords

Navigation