Skip to main content

Advertisement

Log in

Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

This study aimed to analyze the role of endothelial progenitor cell (EPC)-derived angiogenic factors and chemokines in the multistep process driving angiogenesis with a focus on the recently discovered macrophage migration inhibitory factor (MIF)/chemokine receptor axis. Primary murine and murine embryonic EPCs (eEPCs) were analyzed for the expression of angiogenic/chemokines and components of the MIF/CXC chemokine receptor axis, focusing on the influence of hypoxic versus normoxic stimulation. Hypoxia induced an upregulation of CXCR2 and CXCR4 but not CD74 on EPCs and triggered the secretion of CXCL12, CXCL1, MIF, and vascular endothelial growth factor (VEGF). These factors stimulated the transmigration activity and adhesive capacity of EPCs, with MIF and VEGF exhibiting the strongest effects under hypoxia. MIF-, VEGF-, CXCL12-, and CXCL1-stimulated EPCs enhanced tube formation, with MIF and VEGF exhibiting again the strongest effect following hypoxia. Tube formation following in vivo implantation utilizing angiogenic factor-loaded Matrigel plugs was only promoted by VEGF. Coloading of plugs with eEPCs led to enhanced tube formation only by CXCL12, whereas MIF was the only factor which induced differentiation towards an endothelial and smooth muscle cell (SMC) phenotype, indicating an angiogenic and differentiation capacity in vivo. Surprisingly, CXCL12, a chemoattractant for smooth muscle progenitor cells, inhibited SMC differentiation. We have identified a role for EPC-derived proangiogenic MIF, VEGF and MIF receptors in EPC recruitment following hypoxia, EPC differentiation and subsequent tube and vessel formation, whereas CXCL12, a mediator of early EPC recruitment, does not contribute to the remodeling process. By discerning the contributions of key angiogenic chemokines and EPCs, these findings offer valuable mechanistic insight into mouse models of angiogenesis and help to define the intricate interplay between EPC-derived angiogenic cargo factors, EPCs, and the angiogenic target tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MIF:

Macrophage migration inhibitory factor

eEPC:

Embryonic endothelial progenitor cell

EPC:

Endothelial progenitor cell

SVEC:

Simian virus (SV) 40-immortalized murine endothelial cell

CVD:

Cardiovascular disease

CXC:

Chemokine or chemokine receptor of the CXC sub-family

References

  1. Amin MA, Volpert OV, Woods JM, Kumar P, Harlow LA, Koch AE (2003) Migration inhibitory factor mediates angiogenesis via mitogen-activated protein kinase and phosphatidylinositol kinase. Circ Res 93:321–329. doi:10.1161/01.RES.0000087641.56024.DA

    Article  PubMed  CAS  Google Scholar 

  2. Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2004) Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem Cells Dev 13:665–676. doi:10.1089/scd.2004.13.665

    Article  PubMed  CAS  Google Scholar 

  3. Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol 168:529–541

    Article  PubMed  CAS  Google Scholar 

  4. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967. doi:10.1126/science.275.5302.964

    Article  PubMed  CAS  Google Scholar 

  5. Belo AV, Leles F, Barcelos LS, Ferreira MA, Bakhle YS, Teixeira MM, Andrade SP (2005) Murine chemokine CXCL2/KC is a surrogate marker for angiogenic activity in the inflammatory granulation tissue. Microcirculation 12:597–606. doi:10.1080/10739680500253535

    Article  PubMed  CAS  Google Scholar 

  6. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596. doi:10.1038/nm1567

    Article  PubMed  CAS  Google Scholar 

  7. Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R (1994) Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration Inhibitory factor (MIF). Biochemistry 33:14144–14155

    Article  PubMed  CAS  Google Scholar 

  8. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660. doi:10.1038/nm0603-653

    Article  PubMed  CAS  Google Scholar 

  9. Carmeliet P (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med 6:1102–1103. doi:10.1038/80430

    Article  PubMed  CAS  Google Scholar 

  10. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864. doi:10.1038/nm1075

    Article  PubMed  CAS  Google Scholar 

  11. Chesney J, Metz C, Bacher M, Peng T, Meinhardt A, Bucala R (1999) An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med 5:181–191 (PMCID: PMC2230298)

    PubMed  CAS  Google Scholar 

  12. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448. doi:10.1182/blood-2007-03-078709

    Article  PubMed  CAS  Google Scholar 

  13. Dewor M, Steffens G, Krohn R, Weber C, Baron J, Bernhagen J (2007) Macrophage migration inhibitory factor (MIF) promotes fibroblast migration in scratch-wounded monolayers in vitro. FEBS Lett 581:4734–4742. doi:10.1016/j.febslet.2007.08.071 pii: S0014-5793(07)00958-1

    Article  PubMed  CAS  Google Scholar 

  14. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25. doi:10.1210/er.18.1.4

    Article  PubMed  CAS  Google Scholar 

  15. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. doi:10.1038/nm0603-669

    Article  PubMed  CAS  Google Scholar 

  16. Flieger O, Engling A, Bucala R, Lue H, Nickel W, Bernhagen J (2003) Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter. FEBS Lett 551:78–86 pii:S0014579303009001

    Article  PubMed  CAS  Google Scholar 

  17. Folkman J (1998) Angiogenic therapy of the human heart. Circulation 97:628–629. doi:10.1161/01.CIR.97.7.628

    Article  PubMed  CAS  Google Scholar 

  18. Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159

    PubMed  CAS  Google Scholar 

  19. Grieb G, Piatkowski A, Simons D, Hormann N, Dewor M, Steffens G, Bernhagen J, Pallua N (2012) Macrophage migration inhibitory factor is a potential inducer of endothelial progenitor cell mobilization after flap operation. Surgery 151:268-277.e261. doi:10.1016/j.surg.2010.10.008

    Google Scholar 

  20. Hatzopoulos AK, Folkman J, Vasile E, Eiselen GK, Rosenberg RD (1998) Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 125:1457–1468

    PubMed  CAS  Google Scholar 

  21. Hinkel R, El-Aouni C, Olson T, Horstkotte J, Mayer S, Muller S, Willhauck M, Spitzweg C, Gildehaus FJ, Munzing W, Hannappel E, Bock-Marquette I, DiMaio JM, Hatzopoulos AK, Boekstegers P, Kupatt C (2008) Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation 117:2232–2240. doi:10.1161/CIRCULATIONAHA.107.758904

    Article  PubMed  CAS  Google Scholar 

  22. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293. doi:10.1161/01.ATV.0000114236.77009.06

    Article  PubMed  CAS  Google Scholar 

  23. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760. doi:10.1182/blood-2004-04-1396

    Article  PubMed  CAS  Google Scholar 

  24. Keane MP, Belperio JA, Xue YY, Burdick MD, Strieter RM (2004) Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172:2853–2860

    PubMed  CAS  Google Scholar 

  25. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Investig 98:216–224. doi:10.1172/JCI118769

    Article  PubMed  CAS  Google Scholar 

  26. Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S (2005) Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105:3793–3801. doi:10.1182/blood-2004-11-4349

    Article  PubMed  CAS  Google Scholar 

  27. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23:879–894. doi:10.1634/stemcells.2004-0342

    Article  PubMed  CAS  Google Scholar 

  28. Kupatt C, Bock-Marquette I, Boekstegers P (2008) Embryonic endothelial progenitor cell-mediated cardioprotection requires Thymosin beta4. Trends Cardiovasc Med 18:205–210. doi:10.1016/j.tcm.2008.10.002

    Article  PubMed  CAS  Google Scholar 

  29. Kupatt C, Horstkotte J, Vlastos GA, Pfosser A, Lebherz C, Semisch M, Thalgott M, Buttner K, Browarzyk C, Mages J, Hoffmann R, Deten A, Lamparter M, Muller F, Beck H, Buning H, Boekstegers P, Hatzopoulos AK (2005) Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J 19:1576–1578. doi:10.1096/fj.04-3282fje

    PubMed  CAS  Google Scholar 

  30. Lassaletta AD, Chu LM, Sellke FW (2011) Therapeutic neovascularization for coronary disease: current state and future prospects. Basic Res Cardiol 106:897–909. doi:10.1007/s00395-011-0200-1

    Article  PubMed  Google Scholar 

  31. Liehn EA, Postea O, Curaj A, Marx N (2011) Repair after myocardial infarction, between fantasy and reality: the role of chemokines. J Am Coll Cardiol 58:2357–2362. http://dx.doi.org/10.1016/j.jacc.2011.08.034

    Google Scholar 

  32. Liehn EA, Schober A, Weber C (2004) Blockade of keratinocyte-derived chemokine inhibits endothelial recovery and enhances plaque formation after arterial injury in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 24:1891–1896. doi:10.1161/01.ATV.0000143135.71440.75

    Article  PubMed  CAS  Google Scholar 

  33. Liehn EA, Tuchscheerer N, Kanzler I, Drechsler M, Fraemohs L, Schuh A, Koenen RR, Zander S, Soehnlein O, Hristov M, Grigorescu G, Urs AO, Leabu M, Bucur I, Merx MW, Zernecke A, Ehling J, Gremse F, Lammers T, Kiessling F, Bernhagen J, Schober A, Weber C (2011) Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. J Am Coll Cardiol 58:2415-2423. http://dx.doi.org/10.1016/j.jacc.2011.08.033

    Google Scholar 

  34. Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J (2002) Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease. Microbes Infect 4:449–460 pii:S1286457902015605

    Article  PubMed  CAS  Google Scholar 

  35. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95:9448–9453 (PMCID: PMC21358Immunology)

    Article  PubMed  CAS  Google Scholar 

  36. Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM, Mostoslavsky G, Smith LE, Ingber DE (2009) A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457:1103–1108. doi:10.1038/nature07765

    Article  PubMed  CAS  Google Scholar 

  37. Poss J, Werner C, Lorenz D, Gensch C, Bohm M, Laufs U (2010) The renin inhibitor aliskiren upregulates pro-angiogenic cells and reduces atherogenesis in mice. Basic Res Cardiol 105:725–735. doi:10.1007/s00395-010-0120-5

    Article  PubMed  Google Scholar 

  38. Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169. doi:10.1161/01.CIR.0000058702.69484.A0

    Article  PubMed  Google Scholar 

  39. Schober A, Bernhagen J, Thiele M, Zeiffer U, Knarren S, Roller M, Bucala R, Weber C (2004) Stabilization of atherosclerotic plaques by blockade of macrophage migration inhibitory factor after vascular injury in apolipoprotein E-deficient mice. Circulation 109:380–385. doi:10.1161/01.CIR.0000109201.72441.09

    Article  PubMed  CAS  Google Scholar 

  40. Schober A, Knarren S, Lietz M, Lin EA, Weber C (2003) Crucial role of stromal cell-derived factor-1alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation 108:2491–2497. doi:10.1161/01.CIR.0000099508.76665.9A

    Article  PubMed  CAS  Google Scholar 

  41. Schuh A, Liehn EA, Sasse A, Hristov M, Sobota R, Kelm M, Merx MW, Weber C (2008) Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol 103:69–77. doi:10.1007/s00395-007-0685-9

    Article  PubMed  Google Scholar 

  42. Simons D, Grieb G, Hristov M, Pallua N, Weber C, Bernhagen J, Steffens G (2011) Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment. J Cell Mol Med 15:668–678. doi:10.1111/j.1582-4934-2010-01-041.x

    Article  PubMed  CAS  Google Scholar 

  43. Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Hammond HK, Laham RJ, Li W, Pike M, Sellke FW, Stegmann TJ, Udelson JE, Rosengart TK (2000) Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 102:E73–E86. doi:10.1161/01.CIR.102.11.e73

    Article  PubMed  CAS  Google Scholar 

  44. Vajkoczy P, Blum S, Lamparter M, Mailhammer R, Erber R, Engelhardt B, Vestweber D, Hatzopoulos AK (2003) Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 197:1755–1765. doi:10.1084/jem.20021659

    Article  PubMed  CAS  Google Scholar 

  45. Walcher D, Vasic D, Heinz P, Bach H, Durst R, Hausauer A, Hombach V, Marx N (2010) LXR activation inhibits chemokine-induced CD4-positive lymphocyte migration. Basic Res Cardiol 105:487–494. doi:10.1007/s00395-010-0092-5

    Article  PubMed  CAS  Google Scholar 

  46. Walenta KL, Bettink S, Bohm M, Friedrich EB (2011) Differential chemokine receptor expression regulates functional specialization of endothelial progenitor cell subpopulations. Basic Res Cardiol 106:299–305. doi:10.1007/s00395-010-0142-z

    Article  PubMed  CAS  Google Scholar 

  47. Zernecke A, Bernhagen J, Weber C (2008) Macrophage migration inhibitory factor in cardiovascular disease. Circulation 117:1594–1602. doi:10.1161/CIRCULATIONAHA.107.729125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nives Hörmann and Meike Jung for assistance with the hypoxia experiments and Kiril Bidzhekov and Christian Kupatt for providing the eEPC cell clone. This study was supported by IZKF Aachen (K1-2, K1-4) of the Faculty of Medicine, RWTH Aachen University to E.L. and J.B., by the Deutsche Forschungsgemeinschaft (DFG) grants BE1977/4-2/FOR 809 and GRK1508/1-P13 to J.B.), and the NIH (R.B.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jürgen Bernhagen or Elisa A. Liehn.

Additional information

I. Kanzler and N. Tuchscheerer contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2945 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanzler, I., Tuchscheerer, N., Steffens, G. et al. Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis. Basic Res Cardiol 108, 310 (2013). https://doi.org/10.1007/s00395-012-0310-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0310-4

Keywords

Navigation