Skip to main content

Advertisement

Log in

The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In recent years, special attention has been paid to finding new pro-angiogenic factors which could be used in gene therapy of vascular diseases such as critical limb ischaemia (CLI). Angiogenesis, the formation of new blood vessels, is a complex process dependent on different cytokines, matrix proteins, growth factors and other pro- or anti-angiogenic stimuli. Numerous lines of evidence suggest that key mediators of angiogenesis, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) together with fibroblast growth factor2 (FGF2) are involved in regulation of the normal and pathological process of angiogenesis. However, less information is available on the complex interactions between these and other angiogenic factors. The aim of this study was to characterise the effect of fibroblast growth factor2 on biological properties of human endothelial progenitor cells with respect to the expression level of other regulatory cytokines. Ectopic expression of FGF2 in EP cells stimulates their pro-angiogenic behaviour, leading to increased proliferation, migration and tube formation abilities. Moreover, we show that the expression profile of VEGF and other pro-angiogenic cytokines, such as HGF, MCP2, and interleukins, is affected differently by FGF2 in EPC. In conclusion, we provide evidence that FGF2 directly affects not only the biological properties of EP cells but also the expression pattern and secretion of numerous chemocytokines. Our results suggest that FGF2 could be applied in therapeutic approaches for CLI and other ischaemic diseases of the vascular system in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CLI:

Critical limb ischaemia

EPCs:

Endothelial progenitor cells

FGF2:

Basic fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HGF:

Hepatocyte growth factor

HGFR:

Hepatocyte growth factor receptor

MCP2:

Monocyte chemoattractant protein-2

PBS:

Phosphate buffered saline

RT-PCR:

Real-time polymerase chain reaction

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular growth factor receptor

References

  1. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887

    Article  CAS  PubMed  Google Scholar 

  2. Camerliet P, Jain RK (2011) Molecular mechanism and clinical application of angiogenesis. Nature 473:298–307

    Article  Google Scholar 

  3. Otrock ZK, Mahfouz R, Makarem J, Shamseddine A (2007) Understanding the biology of angiogenesis: review of the most important molecular mechanism. Blood Cells Mol Dis 39:212–220

    Article  CAS  PubMed  Google Scholar 

  4. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6:607–614

    Article  CAS  PubMed  Google Scholar 

  6. Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16:107–137

    Article  CAS  PubMed  Google Scholar 

  7. Florkiewicz RZ, Baird A, Gonzalez AM (1991) Multiple forms of bFGF: differential nuclear and cell surface localization. Growth Factors 4:265–275

    Article  CAS  PubMed  Google Scholar 

  8. Lieu C, Heymach J, Overman M, Tran H, Kopetz C (2011) Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 17:6130–6139

    Article  CAS  PubMed  Google Scholar 

  9. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 1:4368–4380

    Article  Google Scholar 

  10. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA (1991) The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 25:11947–11954

    Google Scholar 

  11. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  12. Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831

    Article  CAS  PubMed  Google Scholar 

  13. Seghezzi G, Patel S, Ren JC, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor2 (FGF2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:569–580

    Article  Google Scholar 

  15. Carmeliet P, Luttun A (2001) The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 86:289–297

    CAS  PubMed  Google Scholar 

  16. Tongers J, Roncalli JG, Losordo DW (2010) Role of endothelial progenitor cell during ischemia-induced vasculogenesis and collateral formation. Microvasc Res 79:200–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Minami T, Aird WC (2005) Endothelial cell gene regulation. Trends Cardiovasc Med 15:174–184

    Article  CAS  PubMed  Google Scholar 

  18. Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C, Kieda C (2011) CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry A 79:594–602

    Article  PubMed  Google Scholar 

  19. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  CAS  PubMed  Google Scholar 

  20. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45

    Article  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  22. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1999) New colorimetric cytotoxicity assay for anticancer-drug screening. J Nat Cancer Inst 4:1107–1112

    Google Scholar 

  24. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. PNAS 97:3422–3427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Tongers J, Roncalli JG, Losordo DW (2008) Therapeutic angiogenesis for critical limb ischemia. Microvascular therapies coming of age. Circulation 118:9–16

    Article  PubMed  Google Scholar 

  26. Madonna R, Rokosh G (2012) Insight into gene therapy for critical limb ischemia: the devil is in the details. Vasc Pharmacol 57:10–14

    Article  CAS  Google Scholar 

  27. Powell RJ (2012) Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. J Vasc Surg 56:264–266

    Article  PubMed  Google Scholar 

  28. Aviles RJ, Annex BH, Lederman RJ (2003) Testing clinical therapeutic angiogenesis using basic fibroblast growth factor (FGF-2). Br J Pharmacol 140:637–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. De Haro J, Acin F, Lopez-Quintana A, Florez A, Martinez-Aguilar E, Varela C (2009) Meta-analysis of randomized, controlled clinical trials in angiogenesis: gene and cell therapy in peripheral arterial disease. Heart Vessels 24:321–328

    Article  PubMed  Google Scholar 

  30. Yonemitsu Y, Matsumoto T, Itoh H, Okazaki J, Uchiyama M, Yoshida K, Onimaru M, Onohara T, Inoguchi H, Kyuragi R, Shimokawa M, Ban H, Tanaka M, Inoue M, Shu T, Hasegawa M, Nakanishi Y, Maehara Y (2013) DVC1-0101 to treat peripheral arterial disease: a Phase I/IIa open-label dose-escalation clinical trial. Mol Ther 21(3):707–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nikol S, Baumgartner I, Van Belle E, Diehm C, Visoná A, Capogrossi MC, Ferreira-Maldent N, Gallino A, Wyatt MG, Wijesinghe LD, Fusari M, Stephan D, Emmerich J, Pompilio G, Vermassen F, Pham E, Grek V, Coleman M, Meyer F (2008) Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 16:972–978

    Article  CAS  PubMed  Google Scholar 

  32. Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB, Hillegass WB, Rocha-Singh K, Moon TE, Whitehouse MJ, Annex BH (2002) TRAFFIC Investigators. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 359:2053–2058

    Article  CAS  PubMed  Google Scholar 

  33. Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, Van Belle E (2011) TAMARIS Committees and Investigators. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 377:1929–1937

    Article  CAS  PubMed  Google Scholar 

  34. Goto F, Goto K, Weindel K, Folkman J (1993) Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Investig 69:508–517

    CAS  PubMed  Google Scholar 

  35. Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM (1995) Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92:365–371

    Article  CAS  Google Scholar 

  36. Young PP, Vaugham DE, Hatzopoulos AK (2007) Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog Cardiovasc Dis 49(6):421–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dell’Era P, Coco L, Ronca R, Sennino B, Presta M (2002) Gene expression profile in fibroblast growth factor 2-transformed endothelial cells. Oncogene 21:2433–2440

    Article  PubMed  Google Scholar 

  38. Saadeh PB, Mehrara BJ, Steinbrech DS, Spector JA, Greenwald JA, Chin GS, Ueno H, Gittes GK, Longaker MT (2000) Mechanisms of fibroblasts growth factor-2 modulation of vascular endothelial growth factor expression by osteoblastic cells. Endocrionology 141:2075–2083

    Article  CAS  Google Scholar 

  39. Joy A, Moffett J, Neary K, Mordechai E, Stachowiak EK, Coons S, Rankin-Shapiro J, Florkiewicz RZ, Stachowiak MK (1997) Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 14:171–183

    Article  CAS  PubMed  Google Scholar 

  40. Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, Miyazawa K (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRβ signaling. J Cell Sci 118:3759–3768

    Article  CAS  PubMed  Google Scholar 

  41. Cao R, Ji H, Feng N, Zhang Y, Yang X, Andersson P, Sun Y, Tritsaris K, Hansen AJ, Dissing S, Cao Y (2012) Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci USA 25:15894–15899

    Article  Google Scholar 

  42. Presta M, Andres G, Leali D, Deel’Era P, Ronca R (2009) Inflammatory cells and chemokines sustain FGF-2 induced angiogenesis. Eur Cytokine Netw 20:39–47

    CAS  PubMed  Google Scholar 

  43. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 10:27348–27357

    Article  Google Scholar 

  44. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170:3369–3376

    Article  CAS  PubMed  Google Scholar 

  45. Choi I, Lee YS, Chung HK, Choi D, Ecoiffier T, Lee HN, Kim KE, Lee S, Park EK, Maeng YS, Kim NY, Ladner RD, Petasis NA, Koh CJ, Chen L, Lenz HJ, Hong YK (2013) Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration. Angiogenesis 16:29–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kaga T, Kawano H, Sakaguchi M, Nakazawa T, Taniyama Y, Morishita R (2012) Hepatocyte growth factor stimulated angiogenesis without inflammation: differential actions between hepatocyte growth factor, vascular endothelial growth factor and basic fibroblast growth factor. Vasc Pharmacol 57:3–9

    Article  CAS  Google Scholar 

  47. Salcedo R, Young HA, Ponce ML, Ward JM, Kleinman HK, Murphy WJ, Oppenheim JJ (2001) Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 166:7571–7578

    Article  CAS  PubMed  Google Scholar 

  48. Cheng SS, Lukacs NW, Kunkel SL (2002) Eotaxin/CCL11 suppresses IL-8/CXCL8 secretion from human dermal microvascular endothelial cells. J Immunol 168:2887–2894

    Article  CAS  PubMed  Google Scholar 

  49. Chen J, Akyurek LM, Fellstrom B, Hayry P, Paul LC (1998) Eotaxin and capping protein in experimental vasculopathy. Am J Pathol 153:81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Onimaru M, Yonemitsu Y, Tanii M, Nakagawa K, Masaki I, Okano S, Ishibashi H, Shirasuna K, Hasegawa M, Sueishi K (2002) Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res 91:923–930

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This publication is part of the WroVasc Project–Integrated Cardiovascular Centre, co-financed by the European Regional Development Fund within the Innovative Economy Operational Programme 2007-2013 and realised at the Regional Specialist Hospital, Research and Development Centre in Wroclaw. ‘European Funds—for the development of innovative economy.’

Author Contributions

ML. and A.R. designed the research, performed the experiments, analysed the data and wrote the manuscript; D.B. conceived the experiments; M.P. and C.K. provided the endothelial cell model; D.B., T.D. and W.W. revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Litwin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from individual participant included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litwin, M., Radwańska, A., Paprocka, M. et al. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production. Mol Cell Biochem 410, 131–142 (2015). https://doi.org/10.1007/s11010-015-2545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2545-5

Keywords

Navigation