Skip to main content
Log in

Toll-like receptor 7 stimulation by imiquimod induces macrophage autophagy and inflammation in atherosclerotic plaques

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Atherosclerotic plaques tend to rupture as a consequence of a weakened fibrous cap, particularly in the shoulder regions where most macrophages reside. Macrophages express Toll-like receptors to recognize pathogens and eliminate intracellular pathogens by inducing autophagy. Because Toll-like receptor 7 (TLR7) is thought to be expressed in macrophages but not in smooth muscle cells (SMCs), we investigated whether induction of macrophage autophagic death by TLR7 ligand imiquimod can affect the composition of atherosclerotic plaques in favor of their stability. Immunohistochemical staining of human carotid plaques as well as Western blotting of cultured macrophages and SMCs confirmed that TLR7 was expressed in macrophages, but not in SMCs. In vitro experiments showed that only TLR7 expressing cells underwent imiquimod-induced cell death, which was characterized by autophagosome formation. Imiquimod-treated macrophages activated nuclear factor-κB (NF-κB) and released pro-inflammatory cytokines and chemokines. This effect was inhibited by the glucocorticoid dexamethasone. Imiquimod-induced cytokine release was significantly decreased in autophagy-deficient macrophages because these cells died by necrosis at an accelerated pace. Local in vivo administration of imiquimod to established atherosclerotic lesions in rabbit carotid arteries induced macrophage autophagy without induction of cell death, and triggered cytokine production, upregulation of vascular adhesion molecule-1, infiltration of T-lymphocytes, accumulation of macrophages and enlargement of plaque area. Treatment with dexamethasone suppressed these pro-inflammatory effects in vivo. SMCs and endothelial cells in imiquimod-treated plaques were not affected. In conclusion, imiquimod induces macrophage autophagy in atherosclerotic plaques, but stimulates plaque progression through cytokine release and enhanced infiltration of inflammatory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ambrose JA, D’Agate DJ (2005) Classification of systemic therapies for potential stabilization of the vulnerable plaque to prevent acute myocardial infarction. Am J Cardiol 95:379–382. doi:10.1016/j.amjcard.2004.09.037

    Article  PubMed  Google Scholar 

  2. Ambrose JA, Martinez EE (2002) A new paradigm for plaque stabilization. Circulation 105:2000–2004. doi:10.1161/01.CIR.0000012528.89469.8E

    Article  PubMed  Google Scholar 

  3. Andrie RP, Bauriedel G, Braun P, Hopp HW, Nickenig G, Skowasch D (2011) Prevalence of intimal heat shock protein 60 homologues in unstable angina and correlation with anti-heat shock protein antibody titers. Basic Res Cardiol 106:657–665. doi:10.1007/s00395-011-0171-2

    Article  PubMed  CAS  Google Scholar 

  4. Back M, Ketelhuth DF, Agewall S (2010) Matrix metalloproteinases in atherothrombosis. Prog Cardiovasc Dis 52:410–428. doi:10.1016/j.pcad.2009.12.002

    Article  PubMed  Google Scholar 

  5. Blanchet FP, Piguet V (2010) Immunoamphisomes in dendritic cells amplify TLR signaling and enhance exogenous antigen presentation on MHC-II. Autophagy 6:816–818. doi:10.1016/j.immuni.2010.04.011

    Article  PubMed  Google Scholar 

  6. Boyle JJ, Weissberg PL, Bennett MR (2002) Human macrophage-induced vascular smooth muscle cell apoptosis requires NO enhancement of Fas/Fas-L interactions. Arterioscler Thromb Vasc Biol 22:1624–1630. doi:10.1161/01.ATV.0000033517.48444.1A

    Article  PubMed  CAS  Google Scholar 

  7. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282. doi:10.1056/NEJM199705013361802

    Article  PubMed  CAS  Google Scholar 

  8. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM (2004) Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350:1495–1504. doi:10.1056/NEJMoa040583

    Article  PubMed  CAS  Google Scholar 

  9. Croons V, Martinet W, Herman AG, Timmermans JP, De Meyer GRY (2009) The protein synthesis inhibitor anisomycin induces macrophage apoptosis in rabbit atherosclerotic plaques through p38 mitogen-activated protein kinase. J Pharmacol Exp Ther 329:856–864. doi:10.1124/jpet.108.149948

    Article  PubMed  CAS  Google Scholar 

  10. De Meyer GRY, Kockx MM, Cromheeke KM, Seye CI, Herman AG, Bult H (2000) Periadventitial inducible nitric oxide synthase expression and intimal thickening. Arterioscler Thromb Vasc Biol 20:1896–1902. doi:10.1161/01.ATV.20.8.1896

    Article  PubMed  Google Scholar 

  11. De Meyer GRY, Van Put DJ, Kockx MM, Van Schil P, Bosmans R, Bult H, Buyssens N, Vanmaele R, Herman AG (1997) Possible mechanisms of collar-induced intimal thickening. Arterioscler Thromb Vasc Biol 17:1924–1930. doi:10.1161/01.ATV.17.10.1924

    Article  PubMed  Google Scholar 

  12. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V (2008) Toll-like receptors control autophagy. EMBO J 27:1110–1121. doi:10.1038/emboj.2008.31

    Article  PubMed  CAS  Google Scholar 

  13. Erbel C, Dengler TJ, Wangler S, Lasitschka F, Bea F, Wambsganss N, Hakimi M, Bockler D, Katus HA, Gleissner CA (2011) Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res Cardiol 106:125–134. doi:10.1007/s00395-010-0135-y

    Article  PubMed  CAS  Google Scholar 

  14. Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387. doi:10.1016/j.bbabio.2006.06.014

    Article  PubMed  CAS  Google Scholar 

  15. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200. doi:10.1038/ni758

    Article  PubMed  CAS  Google Scholar 

  16. Jander S, Sitzer M, Schumann R, Schroeter M, Siebler M, Steinmetz H, Stoll G (1998) Inflammation in high-grade carotid stenosis: a possible role for macrophages and T cells in plaque destabilization. Stroke 29:1625–1630. doi:10.1161/01.STR.29.8.1625

    Article  PubMed  CAS  Google Scholar 

  17. Keul P, Lucke S, von Wnuck LK, Bode C, Graler M, Heusch G, Levkau B (2011) Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res 108:314–323. doi:10.1161/CIRCRESAHA.110.235028

    Article  PubMed  CAS  Google Scholar 

  18. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  19. Kockx MM, De Meyer GRY, Jacob WA, Bult H, Herman AG (1992) Triphasic sequence of neointimal formation in the cuffed carotid artery of the rabbit. Arterioscler Thromb 12:1447–1457. doi:10.1161/01.ATV.12.12.1447

    Article  PubMed  CAS  Google Scholar 

  20. Kockx MM, Herman AG (2000) Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res 45:736–746. doi:10.1016/S0008-6363(99)00235-7

    Article  PubMed  CAS  Google Scholar 

  21. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434. doi:10.1083/jcb.200412022

    Article  PubMed  CAS  Google Scholar 

  22. Lafont A (2003) Basic aspects of plaque vulnerability. Heart 89:1262–1267. doi:10.1136/heart.89.10.1262

    Article  PubMed  Google Scholar 

  23. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477. doi:10.1016/S1534-5807(04)00099-1

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P (1993) Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol 143:1551–1559

    PubMed  CAS  Google Scholar 

  25. Lowik CW, Alblas MJ, van de RM, Papapoulos SE, van der PG (1993) Quantification of adherent and nonadherent cells cultured in 96-well plates using the supravital stain neutral red. Anal Biochem 213:426–433. doi:10.1006/abio.1993.1442

    Article  PubMed  CAS  Google Scholar 

  26. Martinet W, Schrijvers DM, De Meyer GRY (2011) Necrotic cell death in atherosclerosis. Basic Res Cardiol 106:749–760. doi:10.1007/s00395-011-0192-x

    Article  PubMed  CAS  Google Scholar 

  27. Martinet W, Verheye S, De Meyer GRY (2007) Selective depletion of macrophages in atherosclerotic plaques via macrophage-specific initiation of cell death. Trends Cardiovasc Med 17:69–75. doi:10.1016/j.tcm.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  28. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM (1993) Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 92:1866–1874. doi:10.1172/JCI116778

    Article  PubMed  CAS  Google Scholar 

  29. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111. doi:10.1091/mbc.E03-09-0704

    Article  PubMed  CAS  Google Scholar 

  30. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT (1994) Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 90:775–778. doi:10.1161/01.CIR.90.2.775

    PubMed  CAS  Google Scholar 

  31. Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC (2009) Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost 101:1006–1011. doi:10.1160/TH08-07-0469

    PubMed  CAS  Google Scholar 

  32. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med 353:1711–1723. doi:10.1056/NEJMra050541

    Article  PubMed  CAS  Google Scholar 

  33. Schiller M, Metze D, Luger TA, Grabbe S, Gunzer M (2006) Immune response modifiers—mode of action. Exp Dermatol 15:331–341. doi:10.1111/j.0906-6705.2006.00414.x

    Article  PubMed  CAS  Google Scholar 

  34. Shi CS, Kehrl JH (2008) MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem 283:33175–33182. doi:10.1074/jbc.M804478200

    Article  PubMed  CAS  Google Scholar 

  35. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14. doi:10.1093/intimm/dxh186

    Article  PubMed  CAS  Google Scholar 

  36. van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44. doi:10.1161/01.CIR.89.1.36

    PubMed  Google Scholar 

  37. Van Herck JL, De Meyer GRY, Martinet W, Bult H, Vrints CJ, Herman AG (2010) Proteasome inhibitor bortezomib promotes a rupture-prone plaque phenotype in ApoE-deficient mice. Basic Res Cardiol 105:39–50. doi:10.1007/s00395-009-0054-y

    Article  PubMed  CAS  Google Scholar 

  38. Van Herck JL, De Meyer GRY, Martinet W, Salgado RA, Shivalkar B, De Mondt R, Van De Ven H, Ludwig A, Van Der Veken P, Van Vaeck L, Bult H, Herman AG, Vrints CJ (2010) Multi-slice computed tomography with N1177 identifies ruptured atherosclerotic plaques in rabbits. Basic Res Cardiol 105:51–59. doi:10.1007/s00395-009-0052-0

    Article  PubMed  Google Scholar 

  39. Virmani R, Burke AP, Farb A, Kolodgie FD (2002) Pathology of the unstable plaque. Prog Cardiovasc Dis 44:349–356. doi:10.1016/j.jacc.2005.10.065

    Article  PubMed  Google Scholar 

  40. Werner N, Nickenig G, Laufs U (2002) Pleiotropic effects of HMG-CoA reductase inhibitors. Basic Res Cardiol 97:105–116

    Article  PubMed  CAS  Google Scholar 

  41. Yi JY, Jung YJ, Choi SS, Hwang J, Chung E (2009) Autophagy-mediated anti-tumoral activity of imiquimod in Caco-2 cells. Biochem Biophys Res Commun 386:455–458. doi:10.1016/j.bbrc.2009.06.046

    Article  PubMed  CAS  Google Scholar 

  42. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552. doi:10.1038/sj.cdd.4401765

    Article  PubMed  CAS  Google Scholar 

  43. Zernecke A, Weber C (2005) Inflammatory mediators in atherosclerotic vascular disease. Basic Res Cardiol 100:93–101. doi:10.1007/s00395-005-0511-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. Chantal de Groote, Rita Van Den Bossche, Anne-Elise Van Hoydonck, Hermine Fret, Cédéric Michiels, Lieve Svensson, Francis Terloo and Isabel Pintelon for excellent technical assistance. We thank Prof. P. Van Schil and Dr. E. Van Vré (University Hospital Antwerp) for collecting and processing the human carotid endarterectomy specimens. This work was supported by the Agency for Innovation by Science and Technology in Flanders (IWT), the Fund for Scientific Research (FWO)-Flanders and Bijzonder Onderzoeksfonds of the University of Antwerp (TOP-BOF). The Tecnai G2 Spirit BioTWIN TEM was purchased with support of the Hercules Foundation (Hercules Type 2) [AUHA004].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido R. Y. De Meyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Meyer, I., Martinet, W., Schrijvers, D.M. et al. Toll-like receptor 7 stimulation by imiquimod induces macrophage autophagy and inflammation in atherosclerotic plaques. Basic Res Cardiol 107, 269 (2012). https://doi.org/10.1007/s00395-012-0269-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0269-1

Keywords

Navigation