Skip to main content

Advertisement

Log in

Vascular endothelial dysfunction in Duchenne muscular dystrophy is restored by bradykinin through upregulation of eNOS and nNOS

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Little is known about the vascular function and expression of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) in Duchenne muscular dystrophy (DMD). Bradykinin is involved in the regulation of eNOS expression induced by angiotensin-converting enzyme inhibitors. We characterized the vascular function and eNOS and nNOS expression in a canine model of DMD and evaluated the effects of chronic bradykinin treatment. Vascular function was examined in conscious golden retriever muscular dystrophy (GRMD) dogs with left ventricular dysfunction (measured by echocardiography) and in isolated coronary arteries. eNOS and nNOS proteins in carotid arteries were measured by western blot and cyclic guanosine monophosphate (cGMP) content was analyzed by radioimmunoassay. Compared with controls, GRMD dogs had an impaired vasodilator response to acetylcholine. In isolated coronary artery, acetylcholine-elicited relaxation was nearly absent in placebo-treated GRMD dogs. This was explained by reduced nNOS and eNOS proteins and cGMP content in arterial tissues. Chronic bradykinin infusion (1 μg/min, 4 weeks) restored in vivo and in vitro vascular response to acetylcholine to the level of control dogs. This effect was NO-mediated through upregulation of eNOS and nNOS expression. In conclusion, this study is the first to demonstrate that DMD is associated with NO-mediated vascular endothelial dysfunction linked to an altered expression of eNOS and nNOS, which can be overcome by bradykinin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bachetti T, Comini L, Pasini E, Cargnoni A, Curello S, Ferrari R (2001) Ace-inhibition with quinapril modulates the nitric oxide pathway in normotensive rats. J Mol Cell Cardiol 33:395–403. doi:10.1006/jmcc.2000.1311

    Article  PubMed  CAS  Google Scholar 

  2. Barbe F, Su JB, Guyene TT, Crozatier B, Ménard J, Hittinger L (1996) Bradykinin pathway is involved in acute hemodynamic effects of enalaprilat in dogs with heart failure. Am J Physiol 270:H1985–H1992

    PubMed  CAS  Google Scholar 

  3. Bartlett RJ, Stockinger S, Denis MM, Bartlett WT, Inverardi L, Le TT, thi Man N, Morris GE, Bogan DJ, Metcalf-Bogan J, Kornegay JN (2000) In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide. Nat Biotechnol 18:615–622. doi:10.1038/76448

    Article  PubMed  CAS  Google Scholar 

  4. Bauser-Heaton HD, Bohlen HG (2007) Cerebral microvascular dilation during hypotension and decreased oxygen tension: a role for nNOS. Am J Physiol Heart Circ Physiol 293:H2193–H2201. doi:10.1152/ajpheart.00190.2007

    Article  PubMed  CAS  Google Scholar 

  5. Bonilla E, Samitt CE, Miranda AF, Hays AP, Salviati G, DiMauro S, Kunkel LM, Hoffman EP, Rowland LP (1988) Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. Cell 54:447–452. doi:10.1016/0092-8674(88)90065-7

    Article  PubMed  CAS  Google Scholar 

  6. Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752. doi:10.1016/0092-8674(95)90471-9

    Article  PubMed  CAS  Google Scholar 

  7. Cerletti M, Negri T, Cozzi F, Colpo R, Andreetta F, Croci D, Davies KE, Cornelio F, Pozza O, Karpati G, Gilbert R, Mora M (2003) Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther 10:750–757. doi:10.1038/sj.gt.3301941

    Article  PubMed  CAS  Google Scholar 

  8. Chang WJ, Iannaccone ST, Lau KS, Masters BS, McCabe TJ, McMillan K, Padre RC, Spencer MJ, Tidball JG, Stull JT (1996) Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci USA 93:9142–9147

    Article  PubMed  CAS  Google Scholar 

  9. Cheng CP, Onishi K, Ohte N, Suzuki M, Little WC (1998) Functional effects of endogenous bradykinin in congestive heart failure. J Am Coll Cardiol 31:1679–1686. doi:10.1016/S0735-1097(98)00159-4

    Article  PubMed  CAS  Google Scholar 

  10. Chetboul V, Escriou C, Tessier D, Richard V, Pouchelon J-L, Thibault H, Lallemand F, Thuillez C, Blot S, Derumeaux G (2004) Tissue Doppler imaging detects early asymptomatic myocardial abnormalities in a dog model of Duchenne’s cardiomyopathy. Eur Heart J 25:1934–1939. doi:10.1016/j.ehj.2004.09.007

    Article  PubMed  Google Scholar 

  11. Chi OZ, Liu X, Weiss HR (2003) Effects of inhibition of neuronal nitric oxide synthase on NMDA-induced changes in cerebral blood flow and oxygen consumption. Exp Brain Res 148:256–260. doi:10.1007/s00221-002-1310-7

    PubMed  CAS  Google Scholar 

  12. Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM (2001) Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circ Res 89:273–278. doi:10.1161/hh1501.094266

    Article  PubMed  CAS  Google Scholar 

  13. Cooper BJ, Winand NJ, Stedman H, Valentine BA, Hoffman EP, Kunkel LM, Scott MO, Fischbeck KH, Kornegay JN, Avery RJ (1988) The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334:154–156. doi:10.1038/334154a0

    Article  PubMed  CAS  Google Scholar 

  14. Van Craenenbroeck EM, Hoymans VY, Beckers PJ, Possemiers NM, Wuyts K, Paelinck BP, Vrints CJ, Conraads VM (2010) Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Res Cardiol 105:665–676. doi:10.1007/s00395-010-0105-4

    Article  PubMed  Google Scholar 

  15. Dell’Agnola C, Wang Z, Storb R, Tapscott SJ, Kuhr CS, Hauschka SD, Lee RS, Sale GE, Zellmer E, Gisburne S, Bogan J, Kornegay JN, Cooper BJ, Gooley TA, Little M-T (2004) Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs. Blood 104:4311–4318. doi:10.1182/blood-2004-06-2247

    Article  PubMed  Google Scholar 

  16. Drelicharz L, Kozlovski V, Skorka T, Heinze-Paluchowska S, Jasinski A, Gebska A, Guzik T, Olszanecki R, Wojnar L, Mende U, Csanyi G, Chlopicki S (2008) NO and PGI(2) in coronary endothelial dysfunction in transgenic mice with dilated cardiomyopathy. Basic Res Cardiol 103:417–430. doi:10.1007/s00395-008-0723-2

    Article  PubMed  CAS  Google Scholar 

  17. Ehring T, Baumgart D, Krajcar M, Hümmelgen M, Kompa S, Heusch G (1994) Attenuation of myocardial stunning by the ACE inhibitor ramiprilat through a signal cascade of bradykinin and prostaglandins but not nitric oxide. Circulation 90:1368–1385. doi:10.1161/01.CIR.90.3.1368

    PubMed  CAS  Google Scholar 

  18. Groves P, Kurz S, Just H, Drexler H (1995) Role of endogenous bradykinin in human coronary vasomotor control. Circulation 92:3424–3430. doi:10.1161/01.CIR.92.12.3424

    PubMed  CAS  Google Scholar 

  19. Heusch G, Post H, Michel MC, Kelm M, Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87:146–152. doi:10.1161/01.RES.87.2.146

    PubMed  CAS  Google Scholar 

  20. Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928. doi:10.1016/0092-8674(87)90579-4

    Article  PubMed  CAS  Google Scholar 

  21. Howell JM, Lochmüller H, O’Hara A, Fletcher S, Kakulas BA, Massie B, Nalbantoglu J, Karpati G (1998) High-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscle of dystrophic dogs: prolongation of expression with immunosuppression. Hum Gene Ther 9:629–634

    Article  PubMed  CAS  Google Scholar 

  22. Ichihara A, Inscho EW, Imig JD, Navar LG (1998) Neuronal nitric oxide synthase modulates rat renal microvascular function. Am J Physiol 274:F516–F524

    PubMed  CAS  Google Scholar 

  23. Jalowy A, Schulz R, Heusch G (1998) AT1 receptor blockade in experimental myocardial ischemia/reperfusion. Basic Res Cardiol 93(Suppl 2):85–91

    Article  PubMed  CAS  Google Scholar 

  24. Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517. doi:10.1016/0092-8674(87)90504-6

    Article  PubMed  CAS  Google Scholar 

  25. Miike T, Sugino S, Ohtani Y, Taku K, Yoshioka K (1987) Vascular endothelial cell injury and platelet embolism in Duchenne muscular dystrophy at the preclinical stage. J Neurol Sci 82:67–80

    Article  PubMed  CAS  Google Scholar 

  26. Mombouli JV, Vanhoutte PM (1995) Kinins and endothelial control of vascular smooth muscle. Annu Rev Pharmacol Toxicol 35:679–705. doi:10.1146/annurev.pa.35.040195.003335

    Article  PubMed  CAS  Google Scholar 

  27. Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012. doi:10.1056/NEJM199312303292706

    Article  PubMed  CAS  Google Scholar 

  28. Nikolaidis LA, Doverspike A, Huerbin R, Hentosz T, Shannon RP (2002) Angiotensin-converting enzyme inhibitors improve coronary flow reserve in dilated cardiomyopathy by a bradykinin-mediated, nitric oxide-dependent mechanism. Circulation 105:2785–2790. doi:10.1161/01.CIR.0000017433.90061.2E

    Article  PubMed  CAS  Google Scholar 

  29. Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666. doi:10.1038/333664a0

    Article  PubMed  CAS  Google Scholar 

  30. Prasad A, Husain S, Schenke W, Mincemoyer R, Epstein N, Quyyumi AA (2000) Contribution of bradykinin receptor dysfunction to abnormal coronary vasomotion in humans. J Am Coll Cardiol 36:1467–1473. doi:10.1016/S0735-1097(00)00892-5

    Article  PubMed  CAS  Google Scholar 

  31. Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud J-L, Galvez BG, Barthélémy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:574–579. doi:10.1038/nature05282

    Article  PubMed  CAS  Google Scholar 

  32. Sander M, Chavoshan B, Harris SA, Iannaccone ST, Stull JT, Thomas GD, Victor RG (2000) Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci USA 97:13818–13823. doi:10.1073/pnas.250379497

    Article  PubMed  CAS  Google Scholar 

  33. Schäfer A, Fraccarollo D, Pförtsch S, Loch E, Neuser J, Vogt C, Bauersachs J (2011) Clopidogrel improves endothelial function and NO bioavailability by sensitizing adenylyl cyclase in rats with congestive heart failure. Basic Res Cardiol 106:485–494. doi:10.1007/s00395-011-0153-4

    Article  PubMed  Google Scholar 

  34. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413. doi:10.1016/j.cardiores.2003.09.019

    Article  PubMed  CAS  Google Scholar 

  35. Schulz R, Post H, Vahlhaus C, Heusch G (1998) Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation 98:1022–1029. doi:10.1161/01.CIR.98.10.1022

    PubMed  CAS  Google Scholar 

  36. Seddon M, Melikian N, Dworakowski R, Shabeeh H, Jiang B, Byrne J, Casadei B, Chowienczyk P, Shah AM (2009) Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation 119:2656–2662. doi:10.1161/CIRCULATIONAHA.108.822205

    Article  PubMed  CAS  Google Scholar 

  37. Sharp NJ, Kornegay JN, Van Camp SD, Herbstreith MH, Secore SL, Kettle S, Hung WY, Constantinou CD, Dykstra MJ, Roses AD (1992) An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 13:115–121

    Article  PubMed  CAS  Google Scholar 

  38. Su JB, Barbe F, Crozatier B, Campbell DJ, Hittinger L (1999) Increased bradykinin levels accompany the hemodynamic response to acute inhibition of angiotensin-converting enzyme in dogs with heart failure. J Cardiovasc Pharmacol 34:700–710

    Article  PubMed  CAS  Google Scholar 

  39. Su JB (2006) Kinins and cardiovascular diseases. Curr Pharm Des 12:3423–3435

    Article  PubMed  CAS  Google Scholar 

  40. Thomas GD, Sander M, Lau KS, Huang PL, Stull JT, Victor RG (1998) Impaired metabolic modulation of alpha-adrenergic vasoconstriction in dystrophin-deficient skeletal muscle. Proc Natl Acad Sci USA 95:15090–15095

    Article  PubMed  CAS  Google Scholar 

  41. Tonduangu D, Hittinger L, Ghaleh B, Le Corvoisier P, Sambin L, Champagne S, Badoual T, Vincent F, Berdeaux A, Crozatier B, Su JB (2004) Chronic infusion of bradykinin delays the progression of heart failure and preserves vascular endothelium-mediated vasodilation in conscious dogs. Circulation 109:114–119. doi:10.1161/01.CIR.0000105726.89770.35

    Article  PubMed  CAS  Google Scholar 

  42. Townsend D, Turner I, Yasuda S, Martindale J, Davis J, Shillingford M, Kornegay JN, Metzger JM (2010) Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs. J Clin Invest 120:1140–1150. doi:10.1172/JCI41329

    Article  PubMed  CAS  Google Scholar 

  43. Valentine BA, Cooper BJ, de Lahunta A, O’Quinn R, Blue JT (1988) Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies. J Neurol Sci 88:69–81

    Article  PubMed  CAS  Google Scholar 

  44. Weidenbach R, Schulz R, Gres P, Behrends M, Post H, Heusch G (2000) Enhanced reduction of myocardial infarct size by combined ACE inhibition and AT(1)-receptor antagonism. Br J Pharmacol 131:138–144. doi:10.1038/sj.bjp.0703544

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Jean-Paul Vilaine, Dr Nicole Villeneuve, Dr Marie-Pierre Bourguignon and Dr Willy Gosgnach for their fruitful discussion and for the measurement of cGMP. This study was supported by Association Française contre les Myopathies JBS and LH No. 13031, and SB No. 13802, 14389, 15208 and by the Ministère de l’Agriculture et de l’Alimentation (France).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Bo Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabiré, H., Barthélémy, I., Blanchard-Gutton, N. et al. Vascular endothelial dysfunction in Duchenne muscular dystrophy is restored by bradykinin through upregulation of eNOS and nNOS. Basic Res Cardiol 107, 240 (2012). https://doi.org/10.1007/s00395-011-0240-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-011-0240-6

Keywords

Navigation