Skip to main content

Advertisement

Log in

The TIR/BB-loop mimetic AS-1 prevents cardiac hypertrophy by inhibiting IL-1R-mediated MyD88-dependent signaling

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Activation of NF-κB contributes to cardiac hypertrophy and the interleukin-1 receptor (IL-1R)-mediated MyD88-dependent signaling pathway predominately activates NF-κB. Recent studies have shown that the TIR/BB-Loop mimetic (AS-1) disrupted the interaction of MyD88 with the IL-1R, resulting in blunting of NF-κB activation. We have examined the effects of AS-1 on the IL-1β-induced hypertrophic response using cultured neonatal cardiac myocytes in vitro and transverse aortic constriction (TAC) pressure overload-induced cardiac hypertrophy in vivo. Neonatal cardiac myocytes were treated with AS-1 15 min prior to IL-1β stimulation for 24 h. AS-1 treatment significantly attenuated IL-1β-induced hypertrophic responses of cardiac myocytes. In vivo experiments showed that AS-1 administration prevented cardiac hypertrophy and dysfunction induced by pressure overload. AS-1 administration disrupted the interaction of IL-1R with MyD88 in the pressure overloaded hearts and prevented activation of NF-κB. In addition, AS-1 prevented increases in activation of the MAPK pathway (p38 and p-ERK) in TAC-induced hypertrophic hearts. Our data suggest that the IL-1R-mediated MyD88-dependent signaling pathway plays a role in the development of cardiac hypertrophy and AS-1 attenuation of cardiac hypertrophy is mediated by blocking the interaction between IL-1R and MyD88, resulting in decreased NF-κB binding activity and decreased MAPK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baldeviano GC, Barin JG, Talor MV, Srinivasan S, Bedja D, Zheng D, Gabrielson K, Iwakura Y, Rose NR, Cihakova D (2010) Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res 106:1646–1655

    Article  PubMed  CAS  Google Scholar 

  2. Bartfai T, Behrens MM, Gaidarova S, Pemberton J, Shivanyuk A, Rebek J Jr (2003) A low molecular weight mimic of the Toll/IL-1 receptor_resistance domain inhibits IL-1 receptor-mediated responses. Proc Natl Acad Sci USA 100:7971–7976

    Article  PubMed  CAS  Google Scholar 

  3. Cao Z, Hu Y, Wu W, Ha T, Kelley J, Deng C, Chen Q, Li C, Li J, Li Y (2009) The TIR/BB-loop mimetic AS-1 protects the myocardium from ischaemia/reperfusion injury. Cardiovasc Res 84:442–451

    Article  PubMed  CAS  Google Scholar 

  4. Chorianopoulos E, Heger T, Lutz M, Frank D, Bea F, Katus HA, Frey N (2010) FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol 105:301–313

    Article  PubMed  CAS  Google Scholar 

  5. Clerk A, Sugden PH (2001) Untangling the web: specific signaling from PKC isoforms to MAP cascades. Circ Res 89:847–849

    PubMed  CAS  Google Scholar 

  6. Davis CN, Mann E, Behrens MM, Gaidarova S, Rebek M, Rebek J Jr, Bartfai T (2006) MyD88-dependent and -independent signaling by IL-1 in neurons probed by bifunctional Toll/IL-1 receptor domain/BB-loop mimetics. Proc Natl Acad Sci USA 103:2953–2958

    Article  PubMed  CAS  Google Scholar 

  7. Dinarello CA (2010) IL-1: discoveries, controversies and future directions. Eur J Immunol 40:599–606

    Article  PubMed  CAS  Google Scholar 

  8. Esposito G, Prasad SV, Rapacciuolo A, Mao L, Koch WJ, Rockman HA (2001) Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation 13:1453–1458

    Google Scholar 

  9. Feng JA, Perry G, Mori T, Hayashi T, Oparil S, Chen YF (2003) Pressure-independent enhancement of cardiac hypertrophy in atrial natriuretic peptide-deficient mice. Clin Exp Pharmacol Physiol 30:343–349

    Article  PubMed  CAS  Google Scholar 

  10. Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, Jacobs M, Ryffel B, Quesniaux VF (2007) IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179:1178–1189

    PubMed  CAS  Google Scholar 

  11. Gupta S, Young D, Maitra RK, Gupta A, Popovic ZB, Yong SL, Mahajan A, Wang Q, Sen S (2008) Prevention of cardiac hypertrophy and heart failure by silencing of NF-kappaB. J Mol Biol 375:637–649

    Article  PubMed  CAS  Google Scholar 

  12. Ha T, Hua F, Li Y, Ma J, Gao X, Kelley J, Zhao A, Haddad GE, Williams DL, Browder IW, Kao RL, Li C (2006) Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 290:H985–H994

    Article  PubMed  CAS  Google Scholar 

  13. Heusch G, Schulz R (2011) A radical view on the contractile machinery in human heart failure. J Am Coll Cardiol 57:310–312

    Article  PubMed  CAS  Google Scholar 

  14. Honsho S, Nishikawa S, Amano K, Zen K, Adachi Y, Kishita E, Matsui A, Katsume A, Yamaguchi S, Nishikawa K, Isoda K, Riches DW, Matoba S, Okigaki M, Matsubara H (2009) Pressure-mediated hypertrophy and mechanical stretch induces IL-1 release and subsequent IGF-1 generation to maintain compensative hypertrophy by affecting Akt and JNK pathways. Circ Res 20:1149–1158

    Article  Google Scholar 

  15. Hu Y, Li T, Wang Yi, Guo L, Shan X, Li J, Chen Q, Li Y (2007) IL-1RI/MyD88-TIR mimic AS-1 inhibits the activation of MyD88-dependent signaling pathway induced by IL-1β in vitro. JNMU 21:354–358

    CAS  Google Scholar 

  16. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314

    Article  PubMed  CAS  Google Scholar 

  17. LaMorte VJ, Thorburn J, Absher D, Spiegel A, Brown JH, Chien KR, Feramisco JR, Knowlton KU (1994) Gq- and/Ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following α1-adrenergic stimulation. J Biol Chem 269:13490–13496

    PubMed  CAS  Google Scholar 

  18. Li T, Wang YM, Liu CY, Hu YL, Wu ML, Li J, Guo L, Chen L, Chen Q, Ha TZ, Li CF, Li YH (2009) MyD88-dependent NFκB activation is involved in fibrinogen-induced hypertrophic response of cardiomyocytes. J Hypertens 27:1084–1093

    Article  PubMed  CAS  Google Scholar 

  19. Li Y, Ha T, Kelley J, Gao X, Browder W, Williams D, Kao RL, Li C (2004) NF-κB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 287:1712–1720

    Article  Google Scholar 

  20. Long CS (2001) The role of interleukin-1 in the failing heart. Heart Fail Rev 6:81–94

    Article  PubMed  CAS  Google Scholar 

  21. Loppnow H, Werdan K, Reuter G, Flad H-D (1998) The interleukin-1 and interleukin-1-converting enzyme families in the cardiovascular system. Eur Cytokine Netw 9:675–680

    PubMed  CAS  Google Scholar 

  22. MacIver DH (2010) Is remodeling the dominant compensatory mechanism in both chronic heart failure with preserved and reduced left ventricular ejection fraction? Basic Res Cardiol 105:227–234

    Article  PubMed  Google Scholar 

  23. Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn-Schmiedeberg’s Arch Pharmacol 363:245–266

    Article  CAS  Google Scholar 

  24. Morisugi T, Tanaka Y, Kawakami T, Kirita T (2010) Mechanical stretch enhances NF-kappaB-dependent gene expression and poly(ADP-ribose) synthesis in synovial cells. J Biochem 147:633–644

    Article  PubMed  CAS  Google Scholar 

  25. Palmer JN, Hartogensis WE, Patten M, Fortuin FD, Long CS (1995) Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 95:2555–2564

    Article  PubMed  CAS  Google Scholar 

  26. Shimbo D, Muntner P, Mann D, Barr RG, Tang W, Post W, Lima J, Burke G, Bluemke D, Shea S (2011) Association of left ventricular hypertrophy with incident hypertension: the multi-ethnic study of atherosclerosis. Am J Epidemiol 173:898–905

    Article  PubMed  Google Scholar 

  27. Shioi T, Matsumori A, Kihara Y, Inoko M, Ono K, Iwanaga Y, Yamada T, Iwasaki A, Matsushima K, Sasayama S (1997) Increased expression of interleukin-1β and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 81:664–671

    PubMed  CAS  Google Scholar 

  28. Akira Shizuo, Takeda Kiyoshi (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  29. Streicher JM, Ren S, Herschman H, Wang Y (2010) MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res 30:1434–1443

    Article  Google Scholar 

  30. Trocha S, Drusco A, Gu Y, Russo MA, Frati G, Jones SP, Lefer DJ, Napoli C, Croce CM (2001) Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977–9982

    Article  PubMed  Google Scholar 

  31. Valeur HS, Valen G (2009) Innate immunity and myocardial adaptation to ischemia. Basic Res Cardiol 104:22–32

    Article  PubMed  CAS  Google Scholar 

  32. Vanderheyden M, Paulus WJ, Voss M, Knuefermann P, Sivasubramanian N, Mann D, Baumgarten G (2005) Myocardial cytokine gene expression is higher in aortic stenosis than in idiopathic dilated cardiomyopathy. Heart 91:926–931

    Article  PubMed  CAS  Google Scholar 

  33. van Empel VP, Bertrand AT, van Oort RJ, van der Nagel R, Engelen M, van Rijen HV, Doevendans PA, Crijns HJ, Ackerman SL, Sluiter W, De Windt LJ (2006) EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J Am Coll Cardiol 48:824–832

    Article  PubMed  Google Scholar 

  34. Volz HC, Seidel C, Laohachewin D, Kaya Z, Müller OJ, Pleger ST, Lasitschka F, Bianchi ME, Remppis A, Bierhaus A, Katus HA, Andrassy M (2010) HMGB1: the missing link between diabetes mellitus and heart failure. Basic Res Cardiol 105:805–820

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y (2001) Signal transduction in cardiac hypertrophy-dissecting compensatory versus pathological pathways utilizing a transgenic approach. Curr Opin Pharmacol 1:134–140

    Article  PubMed  CAS  Google Scholar 

  36. Xia Y, Lee K, Li N, Corbett D, Mendoza L, Frangogiannis NG (2009) Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem Cell Biol 131:471–481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30571842, No. 30971258 to Dr. Yuehua Li, No. 30730044 to Dr. Qi Chen).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehua Li.

Additional information

Y. Zhu and T. Li contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Li, T., Song, J. et al. The TIR/BB-loop mimetic AS-1 prevents cardiac hypertrophy by inhibiting IL-1R-mediated MyD88-dependent signaling. Basic Res Cardiol 106, 787–799 (2011). https://doi.org/10.1007/s00395-011-0182-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0182-z

Keywords

Navigation