Skip to main content

Molecular MR Imaging of Atherosclerosis

  • Chapter
  • First Online:
Cardiovascular Imaging

Abstract

In recent years, extensive research in atherosclerosis disease has elucidated many of the biological and molecular mechanisms and pathways involved in plaque development and progression. This has identified dozens of novel targets for diagnosis, therapy, and treatment evaluation. In vivo molecular imaging techniques, and in particular molecular magnetic resonance imaging (MRI), facilitate studies on the etiology of atherosclerosis and the evaluation of emerging therapies. In this chapter, we review contrast agents and (quantitative) MRI pulse sequences and strategies that have been developed for molecular MRI of atherosclerosis. We focus on targeted and nontargeted MRI contrast agents for specific imaging of inflammation (and especially macrophages), lipids, fibrous cap, thrombus, intra-plaque hemorrhage, apoptosis, and neovascularization. Contrast agents that are discussed include iron oxide-based agents (USPIO, MPIO), gadolinium-based materials (low molecular weight agents, micelles, liposomes, HDL-like particles) for 1H MRI, as well as perfluorocarbon (PFC) emulsions for 19 F MRI. The most promising strategies for diagnosis (vulnerable, rupture-prone plaque detection), for determining therapeutic pathways, for monitoring of therapy, and for treatment personalization will be reviewed in more detail, discussing their value for preclinical research and clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  PubMed  Google Scholar 

  2. Quillard T, Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circ Res. 2012;111:231–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.

    Article  CAS  PubMed  Google Scholar 

  4. Pasterkamp G, Schoneveld AH, van der Wal AC, Haudenschild CC, Clarijs RJ, Becker AE, et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: the remodeling paradox. J Am Coll Cardiol. 1998;32:655–62.

    Article  CAS  PubMed  Google Scholar 

  5. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664–72.

    Article  PubMed  Google Scholar 

  6. Heeneman S, Lutgens E, Schapira KB, Daemen MJAP, Biessen EAL. Control of atherosclerotic plaque vulnerability: insights from transgenic mice. Front Biosci. 2008;13:6289–313.

    Article  CAS  PubMed  Google Scholar 

  7. Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol. 2006;15:318–30.

    Article  CAS  PubMed  Google Scholar 

  8. Caravan P, Farrar CT, Frullano L, Uppal R. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol Imaging. 2009;4:89–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Josephs S, Rowley H, Rubin G. Atherosclerotic peripheral vascular disease symposium II: vascular magnetic resonance and computed tomographic imaging. Circulation. 2008;118:2837–44.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Cai J-M. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–73.

    Article  PubMed  Google Scholar 

  11. Jansen CHP, Perera D, Makowski MR, Wiethoff AJ, Phinikaridou A, Razavi RM, et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 2011;124:416–24.

    Article  CAS  PubMed  Google Scholar 

  12. Chan CF, Keenan NG, Nielles-Vallespin S, Gatehouse P, Sheppard MN, Boyle JJ, et al. Ultra-short echo time cardiovascular magnetic resonance of atherosclerotic carotid plaque. J Cardiovasc Magn Reson. 2010;12:17.

    Google Scholar 

  13. Sharma S, Boujraf S, Bornstedt A, Hombach V, Ignatius A, Oberhuber A, et al. Quantification of Calcifications in Endarterectomy Samples by Means of High-Resolution Ultra-Short Echo Time Imaging. Invest Radiol. 2010;45:109–13.

    Google Scholar 

  14. Károlyi M, Seifarth H, Liew G, Schlett CL, Maurovich-Horvat P, Stolzmann P, et al. Classification of coronary atherosclerotic plaques ex vivo with T1, T2, and ultrashort echo time CMR. JACC Cardiovasc Imaging. 2013;6:466–74.

    Google Scholar 

  15. Singh N, Moody AR, Rochon-Terry G, Kiss A, Zavodni A. Identifying a high risk cardiovascular phenotype by carotid MRI-depicted intraplaque hemorrhage. Int J Cardiovasc Imaging. 2013;29:1477–83.

    Article  PubMed  Google Scholar 

  16. Fayad ZA, Fallon JT, Shinnar M, Wehrli S, Dansky HM, Poon M, et al. Noninvasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation. 1998;98:1541–7.

    Article  CAS  PubMed  Google Scholar 

  17. Galizia MS, Barker A, Liao Y, Collins J, Carr J, McDermott MM, et al. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease. Eur Radiol. 2013.

    Google Scholar 

  18. Chiu J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;327–87.

    Google Scholar 

  19. Phinikaridou A, Andia ME, Passacquale G, Ferro A, Botnar RM. Noninvasive MRI monitoring of the effect of interventions on endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. J Am Heart Assoc. 2013;2:e000402.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gaens ME, Backes WH, Rozel S, Lipperts M, Sanders SN, Jaspers K, et al. Dynamic contrast-enhanced MR imaging of carotid atherosclerotic plaque: model selection, reproducibility, and validation. Radiology. 2013;266:271–9.

    Article  PubMed  Google Scholar 

  21. Michalska M, Machtoub L, Manthey HD, Bauer E, Herold V, Krohne G, et al. Visualization of vascular inflammation in the atherosclerotic mouse by ultrasmall superparamagnetic iron oxide vascular cell adhesion molecule-1-specific nanoparticles. Arterioscler Thromb Vasc Biol. 2012;32:2350–7.

    Article  CAS  PubMed  Google Scholar 

  22. Burtea C, Ballet S, Laurent S, Rousseaux O, Dencausse A, Gonzalez W, et al. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives. Arterioscler Thromb Vasc Biol. 2012;32:e36–48.

    Article  CAS  PubMed  Google Scholar 

  23. Burtea C, Laurent S, Port M, Lancelot E, Ballet S, Rousseaux O, et al. Magnetic resonance molecular imaging of vascular cell adhesion molecule-1 expression in inflammatory lesions using a peptide-vectorized paramagnetic imaging probe. J Med Chem. 2009;52:4725–42.

    Article  CAS  PubMed  Google Scholar 

  24. Deddens LH, van Tilborg GAF, van der Toorn A, van der Marel K, Paulis LEM, van Bloois L, et al. MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent. Mol Imaging Biol. 2013;15:411–22.

    Article  PubMed  Google Scholar 

  25. El-Dakdouki MH, El-Boubbou K, Kamat M, Huang R, Abela GS, Kiupel M, et al. CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging. Pharm Res. 2013.

    Google Scholar 

  26. McAteer MA, Mankia K, Ruparelia N, Jefferson A, Nugent HB, Stork L-A, et al. A leukocyte-mimetic magnetic resonance imaging contrast agent homes rapidly to activated endothelium and tracks with atherosclerotic lesion macrophage content. Arterioscler Thromb Vasc Biol. 2012;32:1427–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Van Bochove GS, Paulis LEM, Segers D, Mulder WJM, Krams R, Nicolay K, et al. Contrast enhancement by differently sized paramagnetic MRI contrast agents in mice with two phenotypes of atherosclerotic plaque. Contrast Media Mol Imaging. 2011;6:35–45.

    Article  PubMed  Google Scholar 

  28. Segers FME, den Adel B, Bot I, van der Graaf LM, van der Veer EP, Gonzalez W, et al. Scavenger receptor-AI-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2013;33:1812–9.

    Article  CAS  PubMed  Google Scholar 

  29. Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JGS, Weinreb DB, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A. 2007;104:961–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mulder WJM, Strijkers GJ, Briley-Saboe KC, Frias JC, Aguinaldo JGS, Vucic E, et al. Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles. Magn Reson Med. 2007;58:1164–70.

    Article  PubMed  Google Scholar 

  31. Dellinger A, Olson J, Link K, Vance S, Sandros MG, Yang J, et al. Functionalization of gadolinium metallofullerenes for detecting atherosclerotic plaque lesions by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15:7.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Wen S, Liu D-F, Cui Y, Harris SS, Chen Y-C, Li KC, et al. In vivo MRI detection of carotid atherosclerotic lesions and kidney inflammation in ApoE-deficient mice by using LOX-1 targeted iron nanoparticles. Nanomedicine. 2013.

    Google Scholar 

  33. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation. 2001;103:415–22.

    Article  CAS  PubMed  Google Scholar 

  34. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation. 2003;107:2453–8.

    Article  CAS  PubMed  Google Scholar 

  35. Makowski MR, Varma G, Wiethoff AJ, Smith A, Mattock K, Jansen CHP, et al. Noninvasive assessment of atherosclerotic plaque progression in ApoE−/− mice using susceptibility gradient mapping. Circ Cardiovasc Imaging. 2011;4:295–303.

    Article  PubMed  Google Scholar 

  36. Sigovan M, Bessaad A, Alsaid H, Lancelot E, Corot C, Neyran B, et al. Assessment of age modulated vascular inflammation in ApoE−/− mice by USPIO-enhanced magnetic resonance imaging. Invest Radiol. 2010;45:702–7.

    Article  PubMed  Google Scholar 

  37. Sigovan M, Kaye E, Lancelot E, Corot C, Provost N, Majd Z, et al. Anti-inflammatory drug evaluation in ApoE−/− mice by ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. Invest Radiol. 2012;47:546–52.

    Article  CAS  PubMed  Google Scholar 

  38. Moonen RPM, Nicolay K, Strijkers GJ. Quantification of USPIO uptake in mouse atherosclerotic plaque by T2 mapping MRI. MAGMA, ESMRMB 2012, 29th annual scientific meeting, Lisbon, 4–6 Oct. Abstr. 2012;25:1 Suppl; 73 p. 55–6.

    Google Scholar 

  39. Coolen BF, Simonis FFJ, Geelen T, Moonen RPM, Arslan F, Paulis LEM, et al. Quantitative T2 mapping of the mouse heart by segmented MLEV phase-cycled T2 preparation. Magn Reson Med. 2013.

    Google Scholar 

  40. Sadat U, Howarth SPS, Usman A, Tang TY, Graves MJ, Gillard JH. Sequential imaging of asymptomatic carotid atheroma using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging: a feasibility study. J Stroke Cerebrovasc Dis. 2013;22:e271–6.

    Article  PubMed  Google Scholar 

  41. Degnan AJ, Patterson AJ, Tang TY, Howarth SPS, Gillard JH. Evaluation of ultrasmall superparamagnetic iron oxide-enhanced MRI of carotid atherosclerosis to assess risk of cerebrovascular and cardiovascular events: follow-up of the ATHEROMA trial. Cerebrovasc Dis. 2012;34:169–73.

    Article  PubMed  Google Scholar 

  42. Patterson AJ, Tang TY, Graves MJ, Müller KH, Gillard JH. In vivo carotid plaque MRI using quantitative T2* measurements with ultrasmall superparamagnetic iron oxide particles: a dose-response study to statin therapy. NMR Biomed. 2011;24:89–95.

    Article  PubMed  Google Scholar 

  43. Yancy AD, Olzinski AR, Hu TC-C, Lenhard SC, Aravindhan K, Gruver SM, et al. Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling. J Magn Reson Imaging. 2005;21:432–42.

    Article  PubMed  Google Scholar 

  44. Herborn CU, Vogt FM, Lauenstein TC, Dirsch O, Corot C, Robert P, et al. Magnetic resonance imaging of experimental atherosclerotic plaque: comparison of two ultrasmall superparamagnetic particles of iron oxide. J Magn Reson Imaging. 2006;24:388–93.

    Article  PubMed  Google Scholar 

  45. Coyne DW. Ferumoxytol for treatment of iron deficiency anemia in patients with chronic kidney disease. Expert Opin Pharmacother. 2009;10:2563–8.

    Article  CAS  PubMed  Google Scholar 

  46. Alam SR, Shah ASV, Richards J, Lang NN, Barnes G, Joshi N, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ Cardiovasc Imaging. 2012;5:559–65.

    Article  PubMed  Google Scholar 

  47. Metabolic Imaging in Carotid Atherosclerosis (MICA) (Internet). Clinical trials.gov. 2013 (cited 7 Feb 2014). Available from: http://clinicaltrials.gov/show/NCT01674257.

  48. Temme S, Bönner F, Schrader J, Flögel U. 19F magnetic resonance imaging of endogenous macrophages in inflammation. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:329–43.

    Article  CAS  PubMed  Google Scholar 

  49. Stoll G, Basse-Lüsebrink T, Weise G, Jakob P. Visualization of inflammation using (19) F-magnetic resonance imaging and perfluorocarbons. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:438–47.

    Article  CAS  PubMed  Google Scholar 

  50. Spahn DR. Blood substitutes. Artificial oxygen carriers: perfluorocarbon emulsions. Crit Care. 1999;3:R93–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kok MB, de Vries A, Abdurrachim D, Prompers JJ, Grüll H, Nicolay K, et al. Quantitative (1)H MRI, (19)F MRI, and (19)F MRS of cell-internalized perfluorocarbon paramagnetic nanoparticles. Contrast Media Mol Imaging. 2011;6:19–27.

    Article  CAS  PubMed  Google Scholar 

  52. De Vries A, Moonen R, Yildirim M, Langereis S, Lamerichs R, Pikkemaat JA, et al. Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging. Contrast Media Mol Imaging. 2014;9:83–91.

    Article  PubMed  Google Scholar 

  53. Sirol M, Itskovich VV, Mani V, Aguinaldo JGS, Fallon JT, Misselwitz B, et al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation. 2004;109:2890–6.

    Article  CAS  PubMed  Google Scholar 

  54. Wen S, Liu D-F, Liu Z, Harris S, Yao Y-Y, Ding Q, et al. OxLDL-targeted iron oxide nanoparticles for in vivo MRI detection of perivascular carotid collar induced atherosclerotic lesions in ApoE-deficient mice. J Lipid Res. 2012;53:829–38.

    Article  CAS  PubMed  Google Scholar 

  55. Briley-Saebo KC, Cho YS, Shaw PX, Ryu SK, Mani V, Dickson S, et al. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol. 2011;57:337–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Briley-Saebo KC, Nguyen TH, Saeboe AM, Cho Y-S, Ryu SK, Volkova ER, et al. In vivo detection of oxidation-specific epitopes in atherosclerotic lesions using biocompatible manganese molecular magnetic imaging probes. J Am Coll Cardiol. 2012;59:616–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lowell AN, Qiao H, Liu T, Ishikawa T, Zhang H, Oriana S, et al. Functionalized low-density lipoprotein nanoparticles for in vivo enhancement of atherosclerosis on magnetic resonance images. Bioconjug Chem. 2012;23:2313–9.

    Article  CAS  PubMed  Google Scholar 

  58. Cormode D, Frias J, Ma Y, Chen W. HDL as a contrast agent for medical imaging. Clin Lipidol. 2009;4:493–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Barazza A, Blachford C, Even-Or O, Joaquin VA, Briley-Saebo KC, Chen W, et al. The complex fate in plasma of gadolinium incorporated into high-density lipoproteins used for magnetic imaging of atherosclerotic plaques. Bioconjug Chem. 2013;24:1039–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 2008;8:3715–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Jung C, Kaul MG, Bruns OT, Ducic T, Freund B, Heine M, et al. Intraperitoneal injection improves the uptake of nanoparticle labeled HDL to atherosclerotic plaques compared to intravenous injection: a multimodal imaging study in ApoE−/− mice. Circ Cardiovasc Imaging. 2013.

    Google Scholar 

  62. Chen W, Cormode DP, Vengrenyuk Y, Herranz B, Feig JE, Klink A, et al. Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression. JACC Cardiovasc Imaging. 2013;6:373–84.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Van Bochove GS, Sanders HMHF, de Smet M, Keizer HM, Mulder WJM, Krams R, et al. Molecular MR imaging of collagen in mouse atherosclerosis by using paramagnetic CNA35 micelles. Eur J Inorg Chem. 2012;2012:2115–25.

    Article  Google Scholar 

  64. Makowski MR, Wiethoff AJ, Blume U, Cuello F, Warley A, Jansen CHP, et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med. 2011;17:383–8.

    Article  CAS  PubMed  Google Scholar 

  65. Makowski MR, Preissel A, von Bary C, Warley A, Schachoff S, Keithan A, et al. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent. Invest Radiol. 2012;47:438–44.

    Article  CAS  PubMed  Google Scholar 

  66. Von Bary C, Makowski M, Preissel A, Keithahn A, Warley A, Spuentrup E, et al. MRI of coronary wall remodeling in a swine model of coronary injury using an elastin-binding contrast agent. Circ Cardiovasc Imaging. 2011;4:147–55.

    Article  Google Scholar 

  67. Quillard T, Croce K, Jaffer F, Weissleder R, Libby P. Molecular imaging of macrophage protease activity in cardiovascular inflammation in vivo. Thromb Haemost. 2011;105:828–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Lancelot E, Amirbekian V, Brigger I, Raynaud J-S, Ballet S, David C, et al. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol. 2008;28:425–32.

    Article  CAS  PubMed  Google Scholar 

  69. Amirbekian V, Aguinaldo J, Amirbekian S. Atherosclerosis and matrix metalloproteinases: experimental molecular MR imaging in vivo. Radiology. 2009;251:429–38.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Hyafil F, Vucic E, Cornily J-C, Sharma R, Amirbekian V, Blackwell F, et al. Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases. Eur Heart J. 2011;32:1561–71.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ouimet T, Lancelot E, Hyafil F, Rienzo M, Deux F, Lemaître M, et al. Molecular and cellular targets of the MRI contrast agent P947 for atherosclerosis imaging. Mol Pharm. 2012;9:850–61.

    Article  CAS  PubMed  Google Scholar 

  72. Ronald JA, Chen JW, Chen Y, Hamilton AM, Rodriguez E, Reynolds F, et al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation. 2009;120:592–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Vymazal J, Spuentrup E, Cardenas-Molina G, Wiethoff AJ, Hartmann MG, Caravan P, et al. Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R. Invest Radiol. 2009;44:697–704.

    Article  CAS  PubMed  Google Scholar 

  74. Spuentrup E, Botnar RM, Wiethoff AJ, Ibrahim T, Kelle S, Katoh M, et al. MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol. 2008;18:1995–2005.

    Article  PubMed  Google Scholar 

  75. Makowski MR, Forbes SC, Blume U, Warley A, Jansen CHP, Schuster A, et al. In vivo assessment of intraplaque and endothelial fibrin in ApoE(−/−) mice by molecular MRI. Atherosclerosis. 2012;222:43–9.

    Article  CAS  PubMed  Google Scholar 

  76. Tavora F, Cresswell N, Li L, Ripple M, Burke A. Immunolocalisation of fibrin in coronary atherosclerosis: implications for necrotic core development. Pathology. 2010;42:15–22.

    Article  CAS  PubMed  Google Scholar 

  77. Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, et al. Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles. Magn Reson Med. 2004;52:1255–62.

    Article  CAS  PubMed  Google Scholar 

  78. Von Elverfeldt D, von zur Muhlen C, Wiens K, Neudorfer I, Zirlik A, Meissner M, et al. In vivo detection of activated platelets allows characterizing rupture of atherosclerotic plaques with molecular magnetic resonance imaging in mice. PLoS One. 2012;7:e45008.

    Article  Google Scholar 

  79. Miserus R-JJHM, Herías MV, Prinzen L, Lobbes MBI, Van Suylen R-J, Dirksen A, et al. Molecular MRI of early thrombus formation using a bimodal alpha2-antiplasmin-based contrast agent. JACC Cardiovasc Imaging. 2009;2:987–96.

    Article  PubMed  Google Scholar 

  80. Van Tilborg GAF, Vucic E, Strijkers GJ, Cormode DP, Mani V, Skajaa T, et al. Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjug Chem. 2010;21:1794–803.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Burtea C, Laurent S, Lancelot E. Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques. Mol Pharm. 2009;6:1903–19.

    Article  CAS  PubMed  Google Scholar 

  82. Burtea C, Laurent S, Murariu O, Rattat D, Toubeau G, Verbruggen A, et al. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res. 2008;78:148–57.

    Article  CAS  PubMed  Google Scholar 

  83. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108:2270–4.

    Article  CAS  PubMed  Google Scholar 

  84. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2103–9.

    Article  CAS  PubMed  Google Scholar 

  85. Perrone-Filardi P, Dellegrottaglie S, Rudd JHF, Costanzo P, Marciano C, Vassallo E, et al. Molecular imaging of atherosclerosis in translational medicine. Eur J Nucl Med Mol Imaging. 2011;38:969–75.

    Article  CAS  PubMed  Google Scholar 

  86. Buxton DB, Antman M, Danthi N, Dilsizian V, Fayad ZA, Garcia MJ, et al. Report of the national heart, lung, and blood institute working group on the translation of cardiovascular molecular imaging. Circulation. 2011;123:2157–63.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the research on the topic of this contribution in the authors’ laboratories was performed within the framework of CTMM, the Center for Translational Molecular Medicine (www.ctmm.nl), project PARISk is park of the CTMM (grant 01C-202), which is supported by the Dutch Heart Foundation. Further funding was provided by the Besluit Subsidies Investeringen Kennisinfrastructuur (BSIK) program entitled Molecular Imaging of Ischemic Heart Disease (project number BSIK03033), the European Community EC-FP6-project Diagnostic Molecular Imaging (DiMI; LSHB-CT-2005-512146), and by the Dutch Heart Foundation (project number 2006 T106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaas Nicolay PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moonen, R.P.M., Strijkers, G.J., Fayad, Z.A., Daemen, M.J.A.P., Nicolay, K. (2015). Molecular MR Imaging of Atherosclerosis. In: Aikawa, E. (eds) Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-09268-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09268-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09267-6

  • Online ISBN: 978-3-319-09268-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics