Skip to main content

Advertisement

Log in

A potential role for angiotensin II in obesity induced cardiac hypertrophy and ischaemic/reperfusion injury

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

The mechanisms for obesity induced myocardial remodelling and subsequent mechanical dysfunction are poorly understood. There is good evidence that angiotensin II and TNFα have strong growth promoting properties and are elevated with obesity. In addition, these two peptides may interact to exacerbate myocardial ischaemic/reperfusion injury.

Hypothesis

Obesity increases systemic and myocardial renin–angiotensin system (RAS) activity and TNFα levels and contributes to obesity induced cardiac remodelling and ischaemic/reperfusion injury.

Methods

Male Wistar rats were placed on a standard rat chow diet or cafeteria diet for 16 weeks. Two additional groups of rats received the respective diets and losartan (30 mg/ kg/d) in their drinking water. Hearts were perfused on the isolated working rat heart perfusion system and mechanical function was documented before and after 15 min normothermic total global ischaemia. Blood and myocardial samples were collected for angiotensin II, TNFα and NADPH oxidase activity determinations.

Results

The rats on the cafeteria diet became obese compared to rats on the standard rat chow (438 ± 5.9 g vs 393 ± 7.3 g for control, p < 0.05). Obesity was associated with elevated serum angiotensin II (0.050 ± 0.015 pmol/ml vs. 0.035 ± 0.003 pmol/ml, p < 0.05) and TNFα levels (42.8 ± 5.93 pg/ml vs. 13.18 ± 2.50 pg/ml, p < 0.05), and increased heart to body weight ratios (3.1 ± 0.04 mg/g vs. 2.8 ± 0.03 mg/g, p < 0.05). Losartan had no effect on body weight but decreased basal myocardial angiotensin II and TNFΑ levels as well as heart to body weight ratio in the obese and lean controls (2.5 ± 0.05 mg/g and 2.6 ± 0.04 mg/g relative to their controls, p < 0.05). Hearts from obese rats had lower reperfusion aortic outputs (AO) than their concurrent controls (18.42 ± 1.17 ml/min vs. 27.8 ± 0.83 ml/min, p < 0.05). Losartan improved aortic output recoveries in obese rats (23.0 ± 1.71 ml/min, p < 0.05).

Conclusions

Obesity increased serum angiotensin II and TNFα levels, blood pressure, and heart weight to body weight ratios. These changes were associated with decreased basal and post–ischaemic myocardial mechanical function. Chronic AT1 receptor antagonism prevented the adverse changes in heart weight, mechanical function and susceptibility to ischaemic/reperfusion injury. Although current data do not exclude additional mechanisms for obesity induced cardiac remodelling, they suggest that angiotensin II may contribute to obesity induced cardiac remodelling and ischaemic/reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaud-Din A, Meterissian R, Lisbona R, McClean LD, Forse RA (1990) Assessment of cardiac function in patients who were morbidly obese. Surgery 108:809–818

    CAS  PubMed  Google Scholar 

  2. Bayorh MA, Ganafa AA, Socci R, Eatman D, Silvestrov N, Abukhalaf IK (2003) Effect of losartan on oxidative stressinduced hypertension in Sprague-Dawley rats. AJH 16:387–392

    Article  CAS  PubMed  Google Scholar 

  3. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91 phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296

    Article  CAS  PubMed  Google Scholar 

  4. Boustany CM, Bharadwaj K, Daugherty A, Brown DR, Randall DC, Cassis LA (2004) Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. Am J Physiol 287:R943–R949

    CAS  Google Scholar 

  5. Bunag RD (1973) Validation in awake rats of a tail-cuff method for measuring systolic blood pressure. J Appl Physiol 34:279–282

    CAS  PubMed  Google Scholar 

  6. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–804

    Article  CAS  PubMed  Google Scholar 

  7. Cerbai E, Crucitti A, Sartiani L et al. (2000) Long-term treatment of spontaneously hypertensive rats with losartan and electrophysiological remodelling of cardiac myocytes. Cardiovasc Res 45:388–396

    Article  CAS  PubMed  Google Scholar 

  8. Dahlhof B (2001) Left ventricular hypertrophy and angiotensin II antagonists. Am J Hypert 14:174–182

    Article  Google Scholar 

  9. De Devitiis O, Fazio S, Petitto M, Maddalena G, Contaldo F, Mancini M (1981) Obesity and cardiac function. Circulation 64:477–482

    PubMed  Google Scholar 

  10. De Lano FA, Balete R, Schmid-Schonbein GW (2005) Control of oxidative stress in microcirculation of spontaneously hypertensive rats. Am J Physiol 288:H805–H812

    CAS  Google Scholar 

  11. Dostal DE (2000) The cardiac reninangiotensin system: novel signalling mechanisms related to cardiac growth and function. Regulatory Peptides 91:1–11

    Article  CAS  PubMed  Google Scholar 

  12. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokineinduced myocardial contractile failure. Circ Res 87:241–247

    CAS  PubMed  Google Scholar 

  13. Frolkis I, Gurevitch J Yuhas Y et al. (2001) Interaction between paracrine tumor necrosis factor – alpha and paracrine angiotensin II during myocardial ischaemia. J Am Coll Cardiol 37:316–322

    Article  CAS  PubMed  Google Scholar 

  14. Giacchetti G, Faloia E, Mariniello B, Sardu C, Gatti C, Camilloni MA, Guerrieri M, Mantero F (2002) Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertens 15:381–388

    Article  CAS  PubMed  Google Scholar 

  15. Gordon T, Kannel WB (1976) Obesity and cardiovascular diseases: the Framingham study. Clin Endocrinol Metab 5:367–375

    Article  CAS  PubMed  Google Scholar 

  16. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    CAS  PubMed  Google Scholar 

  17. Gurevitch J, Froklis I, Yuhas Y et al. (1997) Anti-TNF-α improves myocardial recovery following ischaemia and reperfusion. J Am Coll Cardiol 30:1554–1561

    Article  CAS  PubMed  Google Scholar 

  18. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of reactive oxygen speciesmediated NF-kappa B activation in TNFalpha- induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34:233–240

    Article  CAS  PubMed  Google Scholar 

  19. Hofmann C, Lorenz K, Braithwaite SS et al. (1994) Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 134:264–270

    Article  CAS  PubMed  Google Scholar 

  20. Hotamisligil GS, Arner P, Caro JF et al. (1995) Increased adipose tissue expression of tumor necrosis factor alpha in human obesity and insulin resistance. J Clin Invest 95:2409–2415

    CAS  PubMed  Google Scholar 

  21. Jalowy A, Schulz R, Heusch G (1998) AT1 receptor blockade in experimental myocardial ischaemia/reperfusion. Basic Res Cardiol 93:85–91

    Article  CAS  Google Scholar 

  22. Kalra D, Sivasubramanian N, Mann DL (2002) Angiotensin II induces TNFΑ biosynthesis in the adult mammalian heart through a protein kinase-C dependent pathway. Circulation 105:2198–2205

    Article  CAS  PubMed  Google Scholar 

  23. Kapadia SR, Oral H, Lee J, Nakano M, Taffet GE, Mann DL (1997) Hemodynamic regulation of tumor necrosis factor alpha gene and protein expression in adult feline myocardium. Circ Res 81:187–195

    CAS  PubMed  Google Scholar 

  24. Kawano H, Do YS, Kawano Y, Starnes V, Barr M, Law RE, Hsueh WA (2000) Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 101:1130–1137

    CAS  PubMed  Google Scholar 

  25. Kupatt C, Habazettl H, Goedecke A, Wolf DA, Zahler S, Boekstegers P, Kelly RA, Becker BF (1999) Tumor necrosis factoralpha contributes to ischemia- and reperfusion- induced endothelial activation in isolated hearts. Circ Res 84:392–400

    CAS  PubMed  Google Scholar 

  26. Kuwahara K, Saito Y, Harada M, Ishikawa M, Ogawa E, Miyamoto, Y, Hamanake et al. (1999). Involvement of cardiotrophin- 1 in cardiac myocyte-nonmyocyte interactions during hypertrophy of rat cardiac myocytes in vitro. Circulation 100:1116–1124

    CAS  PubMed  Google Scholar 

  27. Lijnen PJ, Petrov VV, Fugard RH (2000) Induction of cardiac fibrosis by angiotensin II. Methods Find Exp Clin Pharmacol 2:709–723

    Google Scholar 

  28. Meldrum DR, Meng X, Dinarello CA, Ayala A, Cain BS, Shames BD, Ao L, Banerjee A, Harken AH (1998) Human myocardial tissue TNF expression following acute global ischemia in vivo. J Mol Cell Cardiol 30:1683–1689

    Article  CAS  PubMed  Google Scholar 

  29. Naik, GOA, Moe GW, Armstrong PW (2001) Specific and non-specific measurements of tissue angiotensin II cascade members. J Pharm Biomed Anal 24:947–955

    Article  CAS  PubMed  Google Scholar 

  30. Nakumara K, Fushimi K, Kouchi H, Mihara K, Ohe T, Namba M (1998) Inhibitory effect of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor a and angiotensin II. Circulation 98:794–799

    PubMed  Google Scholar 

  31. Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S (1998) Cytokine gene expression after myocardial infarction in rat hearts. Circulation 98:149–156

    CAS  PubMed  Google Scholar 

  32. Paulson DJ, Tahiliani AG (1992) Cardiovascular abnormalities associated with human and rodent obesity. Life Sciences 51:1557–1569

    Article  CAS  PubMed  Google Scholar 

  33. Peterson LR, Waggoner AD, Schechtman KB et al. (2004) Alterations in left ventricular structure and function in young healthy obese women. J Am Coll Cardiol 43:1399–1404

    Article  PubMed  Google Scholar 

  34. Pickavance L, Tadayyon M, Widdowson PS et al. (1999) Therapeutic index for rosiglitazone in dietary obese rats: separation of efficacy and haemodilution. B J Pharmacol 128:1570–1576

    Article  CAS  Google Scholar 

  35. Smits JFM, van Krimpen C, Schoemaker RG, Cleutjens JPM, Daemen MJAP (1992) Angiotensin II receptor blockade after myocardial infarction in rats: effects of haemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:660–673

    Google Scholar 

  36. Sun Y, Ratajska A, Weber KT (1995) Inhibition of angiotensin converting enzyme and attenuation of myocardial fibrosis by lisinopril in rats receiving Angiotensin II. J Lab Clin Med 126:95–101

    CAS  PubMed  Google Scholar 

  37. Sun Y, Zhang J, Bedigian MP, Robinson AD, Weber KT (2004) Tissue angiotensin II in the regulation of inflammatory and fibrogenic components of repair in the rat heart. J Lab Clin Med 143:41–51

    Article  CAS  PubMed  Google Scholar 

  38. Weber KT (1989) Angiotensin and the remodelling of the myocardium. Br J Clin Pharmacol 28 Suppl 2:141S–149S

    CAS  PubMed  Google Scholar 

  39. WHO, The World Health Report 1998: life in the 21st century, World Health Organisation, Geneva, 1998

  40. Wu L, Wang R, de Champlain J, Wilson T (2004) Beneficial and deleterious effects of rosiglitazone on hypertension development in spontaneously hypertensive rats. AJH 17:749–756

    Article  CAS  PubMed  Google Scholar 

  41. Yahia DA, MadaniS, Prost J, Bouchenak M, Belleville J (2005) Fish protein improves blood pressure but alters HDL2 and HDL3 composition and tissue lipoprotein lipase activities in spontaneously hypertensive rats. Eur J Nutr 44:10–17

    Article  CAS  PubMed  Google Scholar 

  42. Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL (1997) Tumor necrosis factor α provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 95:1257–1252

    Google Scholar 

  43. Youn TJ, Kim HS, Oh BH (1999) Ventricular remodelling and transforming growth factor-beta 1 mRNA expression after nontransmural myocardial infarction in rats: effects of angiotensin converting enzyme inhibition and angiotensin type 1 receptor blockade. Basic Res Cardiol 94:246–253

    Article  CAS  PubMed  Google Scholar 

  44. Yu G, Liang X, Xie X, Su M, Zhao S (2001) Diverse effects of chronic treatment with losartan, fosinopril, and amlodipine on apoptosis, angiotensin II in left ventricle of hypertensive rats. Intern J Cardiol 81:123–129

    Article  CAS  Google Scholar 

  45. Yu G, Liang X, Xie X, Su M, Zhao S (2002) Apoptosis, myocardial fibrosis and angiotensin II in the left ventricle of hypertensive rats treated with fosinopril or losartan. Chin Med J 115:1287–1291

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. du Toit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

du Toit, .F., Nabben, M. & Lochner, A. A potential role for angiotensin II in obesity induced cardiac hypertrophy and ischaemic/reperfusion injury. Basic Res Cardiol 100, 346–354 (2005). https://doi.org/10.1007/s00395-005-0528-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0528-5

Key words

Navigation