Skip to main content
Log in

Effects of β-glucan, probiotics, and synbiotics on obesity-associated colitis and hepatic manifestations in C57BL/6J mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Probiotics and prebiotics are commonly used to improve the gut microbiota. Since prebiotics can support the growth of probiotics, co-administration of these is called synbiotics. It has been demonstrated that obesity-induced gut dysbiosis can worsen inflammatory bowel disease symptoms. This study evaluated how modulation of gut microbiota with Schizophyllum commune-derived β-glucan (BG), probiotics (PRO), and synbiotics containing both BG and PRO (SYN) could improve the symptoms of obesity-associated colitis and hepatic manifestation.

Methods

Mice were fed a normal diet (ND), high-fat diet (HFD), and HFD with different additives (BG, PRO, and SYN) for 12 weeks, followed by 5 days of colitis induction. Mice were sacrificed before and after colitis induction. During the experiment, body weight, food and water consumption, and rectal bleeding were monitored. Proteins from the colon were subjected to western blotting, and serum biomarkers such as alanine transaminase, alkaline phosphatase, triglycerides, and total cholesterol were analyzed. Colon and liver samples were sectioned for histological analysis. The fecal microbiota was analyzed based on partial 16S rRNA gene sequences.

Results

Although BG and PRO secured intestinal tight junctions, these two treatments did not modulate inflammatory cell infiltration and inflammatory markers (i.e., IL-6 and TNF-α). In contrast, SYN demonstrated stronger and broader effects in reducing colonic inflammation. While BG treatment increased the abundance of indigenous Lactobacillus, PRO treatment decreased bacterial diversity by suppressing the growth of several species of bacteria. SYN treatment groups, however, supported the growth of both indigenous and supplemented bacteria while maintaining bacterial diversity.

Conclusion

Obesity-associated colitis can be improved by modulating gut bacteria with β-glucan and probiotics. The co-administration of both outperformed β-glucan and probiotic treatment alone by fostering both indigenous and supplemented probiotic strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim DH, Cheon JH (2017) Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies. Immune Netw 17:25–40. https://doi.org/10.4110/in.2017.17.1.25

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474:298–306. https://doi.org/10.1038/nature10208

    Article  CAS  PubMed  Google Scholar 

  3. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434. https://doi.org/10.1038/nature06005

    Article  CAS  PubMed  Google Scholar 

  4. Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140:1756–1767. https://doi.org/10.1053/j.gastro.2011.02.016

    Article  CAS  PubMed  Google Scholar 

  5. Harper JW, Zisman TL (2016) Interaction of obesity and inflammatory bowel disease. World J Gastroenterol 22:7868–7881. https://doi.org/10.3748/wjg.v22.i35.7868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jarmakiewicz-Czaja S, Sokal A, Filip R (2020) What was first, obesity or inflammatory bowel disease? what does the gut microbiota have to do with it? Nutrients 12:3073. https://doi.org/10.3390/nu12103073

    Article  CAS  PubMed Central  Google Scholar 

  7. Versini M, Jeandel P-Y, Rosenthal E et al (2014) Obesity in autoimmune diseases: not a passive bystander. Autoimmun Rev 13:981–1000. https://doi.org/10.1016/j.autrev.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  8. Paik J, Fierce Y, Treuting PM et al (2013) High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible mdr1a−/− male mice. J Nutr 143:1240–1247. https://doi.org/10.3945/jn.113.174615

    Article  CAS  PubMed  Google Scholar 

  9. Uko V, Thangada S, Radhakrishnan K (2012) Liver disorders in inflammatory bowel disease. Gastroenterol Res Pract 2012:642923. https://doi.org/10.1155/2012/642923

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chassaing B, Aitken JD, Malleshappa M et al (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104:15.25.1-15.25.14. https://doi.org/10.1002/0471142735.im1525s104

    Article  Google Scholar 

  11. Looijer-van Langen MA, Dieleman LA (2009) Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis 15:454–462. https://doi.org/10.1002/ibd.20737

    Article  PubMed  Google Scholar 

  12. Tsai YL, Lin TL, Chang CJ et al (2019) Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 26:3. https://doi.org/10.1186/s12929-018-0493-6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Singh V, Muthuramalingam K, Kim YM et al (2021) Synbiotic supplementation with prebiotic Schizophyllum commune derived β-(1,3/1,6)-glucan and probiotic concoction benefits gut microbiota and its associated metabolic activities. Appl Biol Chem 64:7. https://doi.org/10.1186/s13765-020-00572-4

    Article  CAS  Google Scholar 

  14. Żyła E, Dziendzikowska K, Gajewska M et al (2019) Beneficial effects of oat beta-glucan dietary supplementation in colitis depend on its molecular weight. Molecules. https://doi.org/10.3390/molecules24193591

    Article  PubMed  PubMed Central  Google Scholar 

  15. Casellas F, Borruel N, Torrejón A et al (2007) Oral oligofructose-enriched inulin supplementation in acute ulcerative colitis is well tolerated and associated with lowered faecal calprotectin. Aliment Pharmacol Ther 25:1061–1067. https://doi.org/10.1111/j.1365-2036.2007.03288.x

    Article  CAS  PubMed  Google Scholar 

  16. Lindsay JO, Whelan K, Stagg AJ et al (2006) Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut 55:348–355. https://doi.org/10.1136/gut.2005.074971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roy U, Gálvez EJC, Iljazovic A et al (2017) Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells. Cell Rep 21:994–1008. https://doi.org/10.1016/j.celrep.2017.09.097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eom T, Kim YS, Choi CH et al (2018) Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease. J Microbiol 56:189–198. https://doi.org/10.1007/s12275-018-8049-8

    Article  CAS  PubMed  Google Scholar 

  19. Parada Venegas D, De la Fuente MK, Landskron G et al (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277. https://doi.org/10.3389/fimmu.2019.00277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davani-Davari D, Negahdaripour M, Karimzadeh I et al (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods (Basel, Switzerland) 8:92. https://doi.org/10.3390/foods8030092

    Article  CAS  Google Scholar 

  21. Liu B, Lin Q, Yang T et al (2015) Oat β-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct 6:3454–3463. https://doi.org/10.1039/c5fo00563a

    Article  CAS  PubMed  Google Scholar 

  22. Muthuramalingam K, Singh V, Choi C et al (2020) Dietary intervention using (1,3)/(1,6)-β-glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model. Eur J Nutr 59:2617–2629. https://doi.org/10.1007/s00394-019-02110-5

    Article  CAS  PubMed  Google Scholar 

  23. Sun Y, Shi X, Zheng X et al (2019) Inhibition of dextran sodium sulfate-induced colitis in mice by baker’s yeast polysaccharides. Carbohydr Polym 207:371–381. https://doi.org/10.1016/j.carbpol.2018.11.087

    Article  CAS  PubMed  Google Scholar 

  24. Liu X-j, Yu R, Zou K-f (2019) Probiotic mixture VSL#3 alleviates dextran sulfate sodium-induced colitis in mice by downregulating T follicular helper cells. Current Medical Science 39:371–378. https://doi.org/10.1007/s11596-019-2045-z

    Article  CAS  PubMed  Google Scholar 

  25. Segers ME, Lebeer S (2014) Towards a better understanding of Lactobacillus rhamnosus GG—host interactions. Microb Cell Fact 13(Suppl 1):S7–S7. https://doi.org/10.1186/1475-2859-13-S1-S7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Furrie E, Macfarlane S, Kennedy A et al (2005) Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut 54:242–249. https://doi.org/10.1136/gut.2004.044834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics—a review. J Food Sci Technol 52:7577–7587. https://doi.org/10.1007/s13197-015-1921-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Batts KP, Ludwig J (1995) Chronic hepatitis. An update on terminology and reporting. Am J Surg Pathol 19:1409–1417. https://doi.org/10.1097/00000478-199512000-00007

    Article  CAS  PubMed  Google Scholar 

  29. Brunt EM, Janney CG, Di Bisceglie AM et al (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474. https://doi.org/10.1111/j.1572-0241.1999.01377.x

    Article  CAS  PubMed  Google Scholar 

  30. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  32. Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  34. Westcott SL, Schloss PD (2017) OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 2:e00073-17. https://doi.org/10.1128/mSphereDirect.00073-17

    Article  PubMed  PubMed Central  Google Scholar 

  35. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  36. Douglas GM, Maffei VJ (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. https://doi.org/10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Das B, Nair GB (2019) Homeostasis and dysbiosis of the gut microbiome in health and disease. J Biosci. https://doi.org/10.1007/s12038-019-9926-y

    Article  PubMed  Google Scholar 

  39. Kindt A, Liebisch G (2018) The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat Commun 9:3760. https://doi.org/10.1038/s41467-018-05767-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  PubMed  PubMed Central  Google Scholar 

  41. Terpou A, Papadaki A (2019) Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 11:1591. https://doi.org/10.3390/nu11071591

    Article  CAS  PubMed Central  Google Scholar 

  42. Walter J, Maldonado-Gómez MX, Martínez I (2018) To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol 49:129–139. https://doi.org/10.1016/j.copbio.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  43. Rose C, Parker A, Jefferson B et al (2015) The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol 45:1827–1879. https://doi.org/10.1080/10643389.2014.1000761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hempel KA, Sharma AV (2021) Collagenous and lymphocytic colitis. StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC, Treasure Island (FL)

    Google Scholar 

  45. Daulagala AC, Bridges MC (2019) E-cadherin beyond structure: a signaling hub in colon homeostasis and disease. Int J Mol Sci 20:2756. https://doi.org/10.3390/ijms20112756

    Article  CAS  PubMed Central  Google Scholar 

  46. Singer II, Kawka DW, Schloemann S et al (1998) Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 115:297–306. https://doi.org/10.1016/s0016-5085(98)70196-9

    Article  CAS  PubMed  Google Scholar 

  47. Kushkevych I, Dordević D, Kollar P et al (2019) Hydrogen sulfide as a toxic product in the small-large intestine axis and its role in IBD development. J Clin Med 8:1054. https://doi.org/10.3390/jcm8071054

    Article  CAS  PubMed Central  Google Scholar 

  48. Boets E, Deroover L, Houben E et al (2015) Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7:8916–8929. https://doi.org/10.3390/nu7115440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith SA, Ogawa SA, Chau L et al (2020) Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J Clin Invest. https://doi.org/10.1172/jci133371

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bloemen JG, Venema K, van de Poll MC et al (2009) Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr 28:657–661. https://doi.org/10.1016/j.clnu.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  51. Zhou D, Fan JG (2019) Microbial metabolites in non-alcoholic fatty liver disease. World J Gastroenterol 25:2019–2028. https://doi.org/10.3748/wjg.v25.i17.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Acharya S, Timilshina M, Chang JH (2019) Mevalonate promotes differentiation of regulatory T cells. J Mol Med 97:927–936. https://doi.org/10.1007/s00109-019-01784-y

    Article  CAS  PubMed  Google Scholar 

  53. Ma C, Wasti S, Huang S et al (2020) The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide. Gut Microbes 12:1785252. https://doi.org/10.1080/19490976.2020.1785252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laukens D, Brinkman BM, Raes J et al (2016) Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev 40:117–132. https://doi.org/10.1093/femsre/fuv036

    Article  CAS  PubMed  Google Scholar 

  55. Robertson SJ, Lemire P, Maughan H et al (2019) Comparison of co-housing and littermate methods for microbiota standardization in mouse models. Cell Rep 27:1910-1919.e2. https://doi.org/10.1016/j.celrep.2019.04.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2020R1I1A3072840). We would like to thank Editage (www.editage.co.kr) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

VV performed the experiments, collected and analyzed the data, and wrote the manuscript. KM assisted in performing the experiments and data collection in the in vivo study. SV and TU performed fecal microbiota analysis and drafted the microbial results. HC performed histological analysis of colon tissues. YMK planned and supervised the study. TU and MJC conceived and designed the analysis and proofread the manuscript. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Tatsuya Unno or Moonjae Cho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was conducted according to the guidelines of the Animal Care and Use Committee (ACUC No. 2018-0018) at Jeju National University.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, V., Muthuramalingam, K., Singh, V. et al. Effects of β-glucan, probiotics, and synbiotics on obesity-associated colitis and hepatic manifestations in C57BL/6J mice. Eur J Nutr 61, 793–807 (2022). https://doi.org/10.1007/s00394-021-02668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02668-z

Keywords

Navigation