Skip to main content

Advertisement

Log in

Dietary intervention using (1,3)/(1,6)-β-glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

A Correction to this article was published on 19 April 2021

This article has been updated

Abstract

Purpose

Western diet, rich in carbohydrates and fat, is said to be a major factor underlying metabolic syndrome. Interventions with prebiotics, the key modulators of the gut microbiota, have paramount impact on host-associated metabolic disorders. Herein, we investigated the effect of fungus-derived (1,3)/(1,6)-β-glucan, a highly soluble dietary fiber, on high-fat diet (HFD)-induced metabolic distress.

Methods

Male C57BL/6 J mice were fed with different diet groups (n = 11): control diet, HFD, 3 g/kg or 5 g/kg of β-glucan-incorporated HFD. At the end of experimental study period (12th week), body weight, feces weight and fecal moisture content were observed. Further, colonic motility was measured using activated charcoal meal study. Proteins extracted from liver and intestine tissues were subjected to western blot technique. Paraffin-embedded intestinal tissues were sectioned for histochemical [Periodic acid-Schiff (PAS) and Alcian blue (AB) staining] analysis. Fecal microbiota analysis was performed using MOTHUR bioinformatic software.

Results

β-glucan consumption exhibited anti-obesity property in mice groups fed with HFD. In addition, β-glucan ameliorated HFD-induced hepatic stress, colonic motility and intestinal atrophy (reduction in colon length, goblet cells, and mucosal layer thickness). Further, β-glucan incorporation shifted bacterial community by increasing butyrate-producing bacteria such as Anaerostipes, Coprobacillus, and Roseburia and decreasing reportedly obesity-associated bacteria such as Parabacteroides and Lactococcus.

Conclusion

Altogether, the outcomes of this present pre-clinical animal study show β-glucan to be a promising therapeutic candidate in the treatment of HFD-induced metabolic distress. Further comprehensive research has to be conducted to brace its clinical relevance, reproducibility and efficacy for aiding human health.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

Abbreviations

HFD:

High-fat diet

BG:

β-glucan

NMDS:

Non-metric multidimensional scaling

IEC:

Intestinal epithelial cells

References

  1. Morinaka T, Wozniewicz M, Jeszka J et al (2013) Westernization of dietary patterns among young Japanese and polish females—a comparison study. Ann Agric Environ Med 20:122–130

    PubMed  Google Scholar 

  2. Moreno-Fernández S, Garcés-Rimón M, Vera G et al (2018) High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients 10:1–15. https://doi.org/10.3390/nu10101502

    Article  CAS  Google Scholar 

  3. Kleinert S, Horton R (2019) Obesity needs to be put into a much wider context. Lancet 393:724–726. https://doi.org/10.1016/s0140-6736(18)33192-1

    Article  PubMed  Google Scholar 

  4. OECD/EU (2017) Obesity update 2017. OECD Update Rep 13:331–341. https://doi.org/10.1007/s11428-017-0241-7

    Article  Google Scholar 

  5. O’Connor S, Chouinard-Castonguay S, Gagnon C, Rudkowska I (2017) Prebiotics in the management of components of the metabolic syndrome. Maturitas 104:11–18. https://doi.org/10.1016/j.maturitas.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  6. de Cossío LF, Fourrier C, Sauvant J et al (2017) Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain Behav Immun 64:33–49. https://doi.org/10.1016/j.bbi.2016.12.022

    Article  CAS  PubMed  Google Scholar 

  7. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  Google Scholar 

  8. Sonnenburg JL, Bäckhed F (2019) Diet—microbiota interactions as moderators of human metabolism Diet as an important modulator of the. 1–29

  9. Holmes AJ, Chew YV, Colakoglu F et al (2017) Diet–microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab 25:140–151. https://doi.org/10.1016/j.cmet.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  10. Valdes AM, Walter J, Segal E, Spector TD (2018) Role of the gut microbiota in nutrition and health. BMJ (Online) 361:36–44. https://doi.org/10.1136/bmj.k2179

    Article  Google Scholar 

  11. Vinke PC, El Aidy S, van Dijk G (2017) The role of supplemental complex dietary carbohydrates and gut microbiota in promoting cardiometabolic and immunological health in obesity: lessons from healthy non-obese individuals. Front Nutr 4:1–15. https://doi.org/10.3389/fnut.2017.00034

    Article  CAS  Google Scholar 

  12. Poeker SA, Geirnaert A, Berchtold L et al (2018) Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22438-y

    Article  CAS  Google Scholar 

  13. Sanz Y, Santacruz A (2010) Probiotics and prebiotics in metabolic disorders and obesity, 1st edn. Elsevier Inc, Amsterdam

    Google Scholar 

  14. Ferrarese R, Ceresola ER, Preti A, Canducci F (2018) Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. Eur Rev Med Pharmacol Sci 22:7588–7605

    CAS  PubMed  Google Scholar 

  15. Kumar Raut S, Bandawane D (2018) A systematic review on animal models of metabolic syndrome. Int J Pharma Res Health Sci 6:2089–2098. https://doi.org/10.21276/ijprhs.2018.01.04

    Article  CAS  Google Scholar 

  16. Della Vedova MC, Muñoz MD, Santillan LD et al (2016) A mouse model of diet-induced obesity resembling most features of human metabolic syndrome. Nutr Metab Insights 9:93–102. https://doi.org/10.4137/NMI.S32907

    Article  PubMed  PubMed Central  Google Scholar 

  17. Glastras SJ, Chen H, Teh R et al (2016) Mouse models of diabetes, obesity and related kidney disease. PLoS One 11:1–15. https://doi.org/10.1371/journal.pone.0162131

    Article  CAS  Google Scholar 

  18. Wong KS, Chin K-Y, Hj Suhaimi F et al (2016) Animal models of metabolic syndrome: a review. Nutr Metab 13:1–25

    Article  Google Scholar 

  19. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  21. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Larsen N, Brodie EL, Andersen GL et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/aem.03006-05

    Article  PubMed  PubMed Central  Google Scholar 

  23. Westcott SL, Schloss PD (2017) OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 2:1–11. https://doi.org/10.1128/mspheredirect.00073-17

    Article  CAS  Google Scholar 

  24. Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330:55–80. https://doi.org/10.1016/j.jembe.2005.12.017

    Article  Google Scholar 

  25. Delroisse JM, Boulvin AL, Parmentier I et al (2008) Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR. Microbiol Res 163:663–670. https://doi.org/10.1016/j.micres.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  26. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ung K-A, Kilander AF, Lindgren A, Abrahamsson H (2008) Impact of bile acid malabsorption on steatorrhoea and symptoms in patients with chronic diarrhoea. Eur J Gastroenterol Hepatol 12:541–548. https://doi.org/10.1097/00042737-200012050-00011

    Article  Google Scholar 

  28. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  29. Liu Z, Patil IY, Jiang T et al (2015) High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS One 10:1–16. https://doi.org/10.1371/journal.pone.0128274

    Article  CAS  Google Scholar 

  30. Anitha M, Reichardt F, Tabatabavakili S et al (2016) Intestinal dysbiosis contributes to the delayed gastrointestinal transit in high-fat diet fed mice. Cmgh 2:328–339. https://doi.org/10.1016/j.jcmgh.2015.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taba Taba Vakili S, Nezami BG, Shetty A et al (2015) Association of high dietary saturated fat intake and uncontrolled diabetes with constipation: evidence from the national health and nutrition examination survey. Neurogastroenterol Motil 27:1389–1397. https://doi.org/10.1111/nmo.12630

    Article  CAS  PubMed  Google Scholar 

  32. Lee WJ, Kim M, Park HS et al (2006) AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1. Biochem Biophys Res Commun 340:291–295. https://doi.org/10.1016/j.bbrc.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  33. Oishi K, Yamamoto S, Itoh N et al (2015) Wheat alkylresorcinols suppress high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice. J Nutr 145:199–206. https://doi.org/10.3945/jn.114.202754

    Article  CAS  PubMed  Google Scholar 

  34. Kong S, Zhang YH, Zhang W (2018) Regulation of intestinal epithelial cells properties and functions by amino acids. Biomed Res Int 2018:1–10. https://doi.org/10.1155/2018/2819154

    Article  CAS  Google Scholar 

  35. Okumura R, Takeda K (2017) Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med 49:e338. https://doi.org/10.1038/emm.2017.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fyderek K, Strus M, Kowalska-Duplaga K et al (2009) Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J Gastroenterol 15:5287–5294. https://doi.org/10.3748/wjg.15.5287

    Article  PubMed  PubMed Central  Google Scholar 

  37. Camilleri M (2016) High-fat diet, dysbiosis, and gastrointestinal and colonic transit: is there a missing link? Cmgh 2:257–258. https://doi.org/10.1016/j.jcmgh.2016.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gulhane M, Murray L, Lourie R et al (2016) High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Sci Rep 6:1–17. https://doi.org/10.1038/srep28990

    Article  CAS  Google Scholar 

  39. Ye J, Lv L, Wu W et al (2018) Butyrate protects mice against methionine–choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Front Microbiol 9:1–16. https://doi.org/10.3389/fmicb.2018.01967

    Article  Google Scholar 

  40. Sato T, Matsumoto K, Okumura T et al (2008) Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model. FEMS Microbiol Ecol 66:528–536. https://doi.org/10.1111/j.1574-6941.2008.00528.x

    Article  CAS  PubMed  Google Scholar 

  41. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  Google Scholar 

  42. Belenguer A, Duncan SH, Calder AG et al (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599. https://doi.org/10.1128/AEM.72.5.3593-3599.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao J, Cheung PCK (2011) Fermentation of β-glucans derived from different sources by bifidobacteria: evaluation of their bifidogenic effect. J Agric Food Chem 59:5986–5992. https://doi.org/10.1021/jf200621y

    Article  CAS  PubMed  Google Scholar 

  44. Alcon-Giner C, Caim S, Mitra S et al (2017) Optimisation of 16S rRNA gut microbiota profiling of extremely low birth weight infants. BMC Genom 18:1–15. https://doi.org/10.1186/s12864-017-4229-x

    Article  CAS  Google Scholar 

  45. Unno T, Choi J-H, Hur H-G et al (2015) Changes in human gut microbiota influenced by probiotic fermented milk ingestion. J Dairy Sci 98:3568–3576. https://doi.org/10.3168/jds.2014-8943

    Article  CAS  PubMed  Google Scholar 

  46. Graspeuntner S, Loeper N, Künzel S et al (2018) Selection of validated hypervariable regions is crucial in 16S-based microbiota studies of the female genital tract. Sci Rep 8:4–10. https://doi.org/10.1038/s41598-018-27757-8

    Article  CAS  Google Scholar 

  47. Hu L, Lu W, Wang L et al (2017) Assessment of Bifidobacterium species using groEL gene on the basis of illumina miseq high-throughput sequencing. Genes. https://doi.org/10.3390/genes8110336

    Article  PubMed  PubMed Central  Google Scholar 

  48. Loy A, Pfann C, Steinberger M et al (2017) Lifestyle and horizontal gene transfer-mediated evolution of mucispirillum schaedleri, a core member of the murine gut microbiota. mSystems 2:10–11. https://doi.org/10.1128/msystems.00171-16

    Article  CAS  Google Scholar 

  49. Ormerod KL, Wood DLA, Lachner N et al (2016) Genomic characterization of the uncultured bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4:1–17. https://doi.org/10.1186/s40168-016-0181-2

    Article  Google Scholar 

  50. Lecomte V, Kaakoush NO, Maloney CA et al (2015) Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One. https://doi.org/10.1371/journal.pone.0126931

    Article  PubMed  PubMed Central  Google Scholar 

  51. Qiao Y, Sun J, Xie Z et al (2014) Propensity to high-fat diet-induced obesity in mice is associated with the indigenous opportunistic bacteria on the interior of Peyer’s patches. J Clin Biochem Nutr 55:120–128. https://doi.org/10.3164/jcbn.14-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01331801)” Rural Development Administration, Republic of Korea. This research was also supported, in part, by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03012862).

Author information

Authors and Affiliations

Authors

Contributions

KM performed experiments, collected and analyzed data, and drafted the portions of the manuscript pertaining to the in vivo studies. CC assisted in data collection of in vivo studies. VS participated in the fecal microbiota analysis and drafted the results. SIC contributed β-glucan. YMK planned and supervised the work. TU and MJC conceived and designed the analysis and proofread the drafted manuscript. All the authors reviewed the final manuscript.

Corresponding authors

Correspondence to Tatsuya Unno or Moonjae Cho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuramalingam, K., Singh, V., Choi, C. et al. Dietary intervention using (1,3)/(1,6)-β-glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model. Eur J Nutr 59, 2617–2629 (2020). https://doi.org/10.1007/s00394-019-02110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-02110-5

Keywords

Navigation