Skip to main content

Advertisement

Log in

Modulation of human intestinal microbiota in a clinical trial by consumption of a β-d-glucan-enriched extract obtained from Lentinula edodes

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the hypocholesterolemic, immune- and microbiota-modulatory effect of a mushroom extract in hypercholesterolemic subjects.

Methods

A randomized, controlled, double-blind, and parallel clinical trial was carried out with subjects from 18 to 65 years old (n = 52) with untreated mild hypercholesterolemia. Volunteers consumed a β-d-glucan-enriched (BGE) mixture (10.4 g/day) obtained from shiitake mushrooms (Lentinula edodes) ensuring a 3.5 g/day of fungal β-d-glucans or a placebo incorporated in three different commercial creams.

Results

This mixture showed hypocholesterolemic activities in vitro and in animal studies. After eight weeks intervention, no significant differences in lipid- or cholesterol-related parameters were found compared to placebo subjects as well as before and after the BGE mixture administration. No inflammatory or immunomodulatory responses were noticed and no changes in IL-1β, IL-6, TNF-α or oxLDL were recorded. However, consumption of the BGE mixture was safe and managed to achieve the dietary fibre intake recommended as cardiovascular protective diet. Moreover, the BGE mixture modulated the colonic microbiota differently compared to placebo. Microbial community composition varied from before to after the intervention with several genera being positively or negatively correlated with some biomarkers related to cholesterol metabolism.

Conclusion

These results suggested a relation between cholesterol metabolism, microbiota and BGE administration. Nevertheless, the precise significance of this differential modulation was not fully elucidated and requires further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Analytical code is available.

Abbreviations

CVD:

Cardiovascular disease

TC:

Total cholesterol

BGE:

β-d-glucan-enriched mixture

CG:

Control group

TG:

Treatment group

BMI:

Body mass index

WC:

Waist circumference

References

  1. Zawitowski J, Jones P (2015) Regulatory aspects related to plant sterol and stanol supplemented foods. J AOAC Int 98:750–756. https://doi.org/10.5740/jaoacint.SGEZawistowski

    Article  CAS  Google Scholar 

  2. Chen J, Huang XF (2009) The effects of diets enriched in beta-glucans on blood lipoprotein concentrations. J Clin Lipidol 3:154–158. https://doi.org/10.1016/j.jacl.2009.04.054

    Article  PubMed  Google Scholar 

  3. Gil-Ramirez A, Morales D, Soler-Rivas C (2018) Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct 9:53–69. https://doi.org/10.1039/C7FO00835J

    Article  CAS  PubMed  Google Scholar 

  4. Behrouzi A, Nafari AH, Sidat SD (2019) The significance of microbiome in personalized medicine. Clin Transl Med 8:16. https://doi.org/10.1186/s40169-019-0232-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gil-Ramirez A, Ruiz-Rodriguez A, Marin FR, Reglero G, Soler-Rivas C (2014) Effect of ergosterol-enriched extracts obtained from Agaricus bisporus on cholesterol absorption using an in vitro digestion model. J Funct Foods 11:589–597. https://doi.org/10.1016/j.jff.2014.08.025

    Article  CAS  Google Scholar 

  6. Lambeau KV, McRorie JW Jr (2017) Fiber supplements and clinically proven health benefits: how to recognize and recommend an effective fiber therapy. J Am Assoc Nurse Pract 29:216–223. https://doi.org/10.1002/2327-6924.12447

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maheshwari G, Sowrirajan S, Joseph B (2019) β-Glucan, a dietary fiber in effective prevention of lifestyle diseases—an insight. Bioact Carbohydr Diet Fibre 19:100187. https://doi.org/10.1016/j.bcdf.2019.100187

    Article  CAS  Google Scholar 

  8. Wang Y, Ames NP, Tun HM, Tosh SM, Jones PJ, Khafipour E (2016) High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front Microbiol 7:129. https://doi.org/10.3389/fmicb.2016.00129

    Article  PubMed  PubMed Central  Google Scholar 

  9. Volman JJ, Ramakers JD, Plat J (2008) Dietary modulation of immune function by β-glucans. Physiol Behav 94:276–284. https://doi.org/10.1016/j.physbeh.2007.11.045

    Article  CAS  PubMed  Google Scholar 

  10. Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gerard P, Maguin E, Rhimi M (2019) Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 60:323–332. https://doi.org/10.1194/jlr.R088989

    Article  CAS  PubMed  Google Scholar 

  11. Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhart BE, Barker LA, Breuel KF, DePonti WK, Kalbfleisch JH, Ensley HE, Brown GD, Gordon S, Williams DL (2005) Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J Pharmacol Exp Ther 314:1079–1086. https://doi.org/10.1124/jpet.105.085415

    Article  CAS  PubMed  Google Scholar 

  12. Petravic-Tominac V, Zechner-Krpan V, Grba S, Srecec S, Panjkota-Krbacvic I, Vidovic L (2010) Biological effects of yeast β-glucans. Agric Conspect Sci 75:149–158

    Google Scholar 

  13. Batbayar S, Lee DH, Kim HW (2012) Immunomodulation of fungal β-glucan in host defense signalling by dectin-1. Biomol Ther 20:433–445. https://doi.org/10.4062/biomolther.2012.20.5.433

    Article  CAS  Google Scholar 

  14. Gil-Ramirez A, Caz V, Martin-Hernandez R, Marin FR, Largo C, Rodriguez-Casado A, Tabernero M, Ruiz-Rodriguez A, Reglero G, Soler-Rivas C (2016) Modulation of cholesterol-related gene expression by ergosterol and ergosterol-enriched extracts obtained from Agaricus bisporus. Eur J Nutr 55:1041–1057. https://doi.org/10.1007/s00394-015-0918-x

    Article  CAS  PubMed  Google Scholar 

  15. Palanisamy M, Aldars-Garcia L, Gil-Ramirez A, Ruiz-Rodriguez A, Marin FR, Reglero G, Soler-Rivas C (2014) Pressurized water extraction of β-glucan enriched fractions with bile acids-binding capacities obtained from edible mushrooms. Biotechnol Prog 30:391–400. https://doi.org/10.1002/btpr.1865

    Article  CAS  PubMed  Google Scholar 

  16. Yang H, Hwang I, Kim S, Hong EJ, Jeung EB (2013) Lentinus edodes promotes fat removal in hypercholesterolemic mice. Exp Ther Med 6:1409–1413. https://doi.org/10.3892/etm.2013.1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morales D, Smiderle FR, Villalva M, Abreu H, Rico C, Santoyo S, Iacomini M, Soler-Rivas C (2019) Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes. J Funct Foods 60:103446. https://doi.org/10.1016/j.jff.2019.103446

    Article  CAS  Google Scholar 

  18. Caz V, Gil-Ramirez A, Santamaria M, Tabernero M, Soler-Rivas C, Martin-Hernandez R, Marin FR, Reglero G, Largo C (2016) Plasma cholesterol-lowering activity of lard functionalized with mushroom extracts is independent of Niemann-Pick C1-like 1 Protein and ABC sterol transporter gene expression in hypercholesterolemic mice. J Agric Food Chem 64:1686–1694. https://doi.org/10.1021/acs.jafc.5b05490

    Article  CAS  PubMed  Google Scholar 

  19. Zhu M, Nie P, Lian Y, Wang B (2013) Optimizing conditions of polysaccharide extraction from shiitake mushroom using response surface methodology and its regulating lipid metabolism. Carbohydr Polym 95:644–648. https://doi.org/10.1016/j.carbpol.2013.03.035

    Article  CAS  PubMed  Google Scholar 

  20. Morales D, Tabernero M, Largo C, Polo G, Piris AJ, Soler-Rivas C (2018) Effect of traditional and modern culinary processing, bioaccesibility, biosafety and bioavailability of eritadenine, a hypocholesterolemic compound from edible mushrooms. Food Funct 9:6360–6368. https://doi.org/10.1039/C8FO01704B

    Article  CAS  PubMed  Google Scholar 

  21. Morales D, Tejedor-Calvo E, Jurado-Chivato N, Polo G, Tabernero M, Ruiz-Rodriguez A, Largo C, Soler-Rivas C (2019) In vitro and in vivo testing of the hypocholesterolemic activity of ergosterol- and β-glucan-enriched extracts obtained from shiitake mushrooms (Lentinula edodes). Food Funct 10:7325–7332. https://doi.org/10.1039/C9FO01744E

    Article  CAS  PubMed  Google Scholar 

  22. Morales D, Smiderle FR, Piris AJ, Soler-Rivas C, Prodanov M (2019) Production of a β-D-glucan-rich extract from shiitake mushrooms (Lentinula edodes) by an extraction/microfiltration/reverse osmosis (nanofiltration) process. Innov Food Sci Emerg 51:80–90. https://doi.org/10.1016/j.ifset.2018.04.003

    Article  CAS  Google Scholar 

  23. Morales D, Piris AJ, Ruiz-Rodriguez A, Prodanov M, Soler-Rivas C (2018) Extraction of bioactive compounds against cardiovascular diseases from Lentinula edodes using a sequential extraction method. Biotechnol Prog 34:746–755. https://doi.org/10.1002/btpr.2616

    Article  CAS  PubMed  Google Scholar 

  24. Morales D, Rutckeviski R, Villalva M, Abreu H, Soler-Rivas C, Santoyo S, Iacomini M, Smiderle FR (2020) Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities. Carbohyd Polym 229:115521. https://doi.org/10.1016/j.carbpol.2019.115521

    Article  CAS  Google Scholar 

  25. He H (2019) Influencia del procesado y de la matriz alimentaria en la bioaccesibilidad de un extracto hipocolesterolémico obtenido de la seta shiitake (Lentinula edodes). Servicio de Publicaciones de la Universidad Autónoma de Madrid

  26. EFSA (2010) Scientific opinion on the substantiation of a health claim related to oat beta glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 8:1885

    Google Scholar 

  27. EFSA (2011) Scientific opinion on the substantiation of a health claim related to barley beta glucans and lowering of blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 9:2471

    Article  Google Scholar 

  28. Puri KS, Suresh KR, Gogtay NJ, Thatte UM (2009) Declaration of Helsinki, 2008: implications for stakeholders in research. J Postgrad Med 51:131–134. https://doi.org/10.4103/0022-3859.52846

    Article  Google Scholar 

  29. Ortega RM, Requejo AM, Lopez-Sobaler AM (2006) Models of questionnaires for dietary studies in the assessment of nutritional status. In: Ortega RM, Requejo AM (eds) Nutriguía manual of clinical nutrition in primary care. Editorial Panamericana, Madrid, pp 456–467

    Google Scholar 

  30. WHO/FAO (1976) Methodology of nutritional surveillance. Report of a Joint FAO/UNICEF/WHO Expert Committee, The World Health Organization technical report series. WHO/FAO, Geneva, Switzerland

  31. Levy AM, Kita H, Phillips SF, Schkade PA, Dyer PD, Gleich GJ, Dubravec VA (1998) Eosinophilia and gastrointestinal symptoms after ingestion of shiitake mushrooms. J Allergy Clin Immunol 101:613–620. https://doi.org/10.1016/S0091-6749(98)70168-X

    Article  CAS  PubMed  Google Scholar 

  32. Wolever TMS, Tosh SM, Gibss AL, Brand-Miller J, Duncan AM, Hart V, Lamarche B, Thomson BA, Duss R, Wood PJ (2010) Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trials. Am J Clin Nutr 92:723–732. https://doi.org/10.3945/ajcn.2010.29174

    Article  CAS  PubMed  Google Scholar 

  33. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  34. Ramiro-Garcia J, Hermes GDA, Giatsis C, Sipkema D, Zoetendal EG, Schaap PJ, Smidt H (2018) NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000 Res 5:1791. https://doi.org/10.12688/f1000research.9227.2

  35. Poncheewin W, Hermes GDA, van Dam JCJ, Koehorst JJ, Smidt H, Schaap PJ (2020) NG-Tax 2.0: a semantic framework for high-troghput amplicon analysis. Front Genet 10:1366. https://doi.org/10.3389/fgene.2019.01366

  36. Harrell Jr FE, Dupont MC (2006) The Hmisc package. R Package version 2.0-0. 3:0–12

  37. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172. https://doi.org/10.1038/ismej.2010.133

    Article  PubMed  Google Scholar 

  38. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2007) The vegan package. Commun Ecol Package 10:631–637

    Google Scholar 

  39. Lahti L, Shetty SA, Blake T, Salojarvi J (2017) Tools for microbiome analysis in R. version 1:28

  40. Gil-Ramirez A, Caz V, Smiderle FR, Martin-Hernandez R, Largo C, Tabernero M, Marin FR, Iacomini M, Reglero G, Soler-Rivas C (2016) Water-soluble compounds from Lentinula edodes influencing the HMG-CoA reductase activity and the expression of genes involved in the cholesterol metabolism. J Agric Food Chem 64:1910–1920. https://doi.org/10.1021/acs.jafc.5b05571

    Article  CAS  PubMed  Google Scholar 

  41. Schneider I, Kressela G, Meyerb A, Kringsb U, Bergerb RG, Hahna A (2011) Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. J Funct Foods 3:17–24. https://doi.org/10.1016/j.jff.2010.11.004

    Article  CAS  Google Scholar 

  42. Poddar KH, Ames M, Hsin-Jen C (2013) Positive effect of mushrooms substituted form meat on body weight, body composition, and health parameters. A 1-year randomized clinical trial. Appetite 71:379–387. https://doi.org/10.1016/j.appet.2013.09.008

    Article  PubMed  Google Scholar 

  43. Khatun K, Mahtab H, Khanam PA, Sayeed MA, Khan KA (2007) Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Med J 16:94–99. https://doi.org/10.3329/mmj.v16i1.261

    Article  CAS  PubMed  Google Scholar 

  44. Wachtel-Galor S, Tomlinson B, Benzie IF (2004) Ganoderma lucidum (“Lingzhi”), a Chinese medicinal mushroom: biomarker responses in a controlled human supplementation study. Brit J Nutr 91:264–269. https://doi.org/10.1079/BJN20041039

    Article  CAS  Google Scholar 

  45. Gaullier JM, Sleboda J, Ojford ES, Ulvestad E, Nurminiemi M, Moe C, Tor A, Gudmunsen O (2011) Supplementation with a soluble beta-glucan exported from Shiitake medicinal mushroom, Lentinus edodes (Berk.) singer mycelium: a crossover, placebo controlled study in healthy elderly. Int J Med Mushrooms 13:319–326. https://doi.org/10.1615/intjmedmushr.v13.i4.10

    Article  CAS  PubMed  Google Scholar 

  46. Story JA, Kritchevsky D (1976) Comparison of the binding of various bile acids and bile salts in vitro by several types of fiber. J Nutr 106:1292–1294. https://doi.org/10.1093/jn/106.9.1292

    Article  CAS  PubMed  Google Scholar 

  47. Bacha U, Nasir M, Iqbal S, Anjun AA (2017) Nutraceutical, anti-inflammatory, and immune modulatory effects of β-glucan isolated from yeast. BioMed Res Int 2017:8972678. https://doi.org/10.1155/2017/8972678

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wood PJ, Beer MU, Butler G (2000) Evaluation of role of concentration and molecular weight of oat β-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose. Brit J Nutr 84:19–23. https://doi.org/10.1017/S0007114500001185

    Article  CAS  PubMed  Google Scholar 

  49. EFSA (2017) Dietary reference values for nutrients: summary report. EFSA supporting publication e15121

  50. Gao S, Zhao D, Wang M, Zhao F, Han X, Qi Y, Liu J (2017) Association between circulating oxidized LDL and atherosclerotic cardiovascular disease: a meta-analysis of observational studies. Can J Cardiol 33:1624–1632. https://doi.org/10.1016/j.cjca.2017.07.015

    Article  PubMed  Google Scholar 

  51. Dai X, Stanilka JM, Rowe CA, Esteves EA, Nieves C Jr, Spaiser SJ, Christman MC, Langkamp-Henken B, Percival SS (2015) Consuming Lentinula edodes (Shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults. J Am Coll Nutr 34:478–487. https://doi.org/10.1080/07315724.2014.950391

    Article  CAS  PubMed  Google Scholar 

  52. Yu S, Weaver V, Martin K, Cantorna MT (2009) The effects of whole mushrooms during inflammation. BMC Immunol 10:12. https://doi.org/10.1186/1471-2172-10-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stephany MP, Chung S, Handler MZ, Handler NS, Handler GA, Schwartz RA (2016) Shiitake mushroom dermatitis: a review. Am J Clin Dermatol 17:485–489. https://doi.org/10.1007/s40257-016-0212-6

    Article  PubMed  Google Scholar 

  54. Hallfrisch J, Behall KM (2003) Physiological responses of men and women to barley and oat extracts (nu-trimX). I. Breath hydrogen, methane, and gastrointestinal symptoms. Creal Chem 80:76–79. https://doi.org/10.1094/CCHEM.2003.80.1.76

    Article  CAS  Google Scholar 

  55. Ascher S, Reinhardt C (2018) The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol 48:564–575. https://doi.org/10.1002/eji.201646879

    Article  CAS  PubMed  Google Scholar 

  56. Kjolbaek L, Benitez-Paez A, del Pulgar EMG, Brahe LK, Liebisch G, Matysik S, Rampelli S, Vermeiren J, Brigidi P, Larsen LH, Astrup A, Sanz Y (2019) Arabinoxylan oligosaccharides and polyunsaturated fatty acid effects on gut microbiota and metabolic markers in overweight individuals with signs of metabolic syndrome: a randomized cross-over trial. Clin Nutr 39:67–79. https://doi.org/10.1016/j.clnu.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  57. Holscher HD, Caporaso JG, Hooda S, Brulc JM, Fahey GC, Swanson KS (2014) Fiber supplementation influences phylogenetic structure and functional capacity of the human intestinal microbiome: follow-up of a randomized controlled trial. Am J Clin Nutr 101:55–64. https://doi.org/10.3945/ajcn.114.092064

    Article  CAS  PubMed  Google Scholar 

  58. Muruguesan S, Ulloa-Martinez M, Martinez-Rojano H, Galvan-Rodriguez FM, Miranda-Brito C, Romano MC, Piña-Escobedo A, Pizano-Zárate ML, Hoyo-Vadillo C, Garcia-Mena J (2015) Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis 34:1337–1346. https://doi.org/10.3945/10.1007/s10096-015-2355-4

    Article  Google Scholar 

  59. Lee SM, Han HW, Yim SY (2015) Beneficial effects of soy milk and fiber on high cholesterol diet-induced alteration of gut microbiota and inflammatory gene expression in rats. Food Funct 6:492–500. https://doi.org/10.1039/C4FO00731J

    Article  CAS  PubMed  Google Scholar 

  60. Udayappan S, Manneras-Holm L, Chaplin-Scott A, Belzer C, Herrema H, Dallinga-Thie GM, Duncan SH, Stroes ESG, Groen AK, Flint HJ, Backhed F, de Vos WM, Niewdorp M (2016) Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes 2:16009. https://doi.org/10.1038/npjbiofilms.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yang Y, Shi Y, Wiklund P, Tan X, Wu N, Zhang X, Tikkanen O, Zhang C, Munukka E, Cheng S (2017) The association between cardiorespiratory fitness and gut microbiota composition in premenopausal women. Nutrients 9:792. https://doi.org/10.3390/nu9080792

    Article  CAS  PubMed Central  Google Scholar 

  62. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14. https://doi.org/10.1126/scitranslmed.3000322

  63. Wang K, Liao M, Zhou N, Bao L, Ma K, Zheng Z, Wang Y, Liu C, Wang W, Wang J, Liu SJ, Liu H (2019) Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep 26:222–235. https://doi.org/10.1016/j.celrep.2018.12.028

    Article  CAS  PubMed  Google Scholar 

  64. Sun NX, Tong LT, Liang TT, Wang LL, Liu LY, Zhou XR, Zhou SM (2019) Effect of oat and tartary buckwheat-based food on cholesterol-lowering and gut microbiota in hypercholesterolemic hamsters. J Oleo Sci 68:251–259. https://doi.org/10.5650/jos.ess18221

    Article  CAS  PubMed  Google Scholar 

  65. Liu S, Bennet DC, Tun HM, Kim JE, Cheng KM, Zhang H, Leung FC (2015) The effect of diet and host genotype on cecal microbiota of Japanese quail fed a cholesterol enriched diet. Front Microbiol 6:1092. https://doi.org/10.3389/fmicb.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  66. Oner O, Aslim B, Aydas SB (2014) Mechanisms of cholesterol-lowering effects of lactobacilli and bifidobacteria strains as potential probiotics with their bsh gene analysis. J Mol Microbiol Biotechnol 24:12–18. https://doi.org/10.1159/000354316

    Article  CAS  PubMed  Google Scholar 

  67. Zanotti I, Turroni F, Piemontese A, Mancabelli L, Milani C, Viappiani A, Prevedini G, Sanchez B, Margolles A, Elviri L, Franco B, van Sinderen D, Ventura M (2015) Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation. Appl Microbiol Biotechnol 99:6813–6829. https://doi.org/10.1007/s00253-015-6564-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a national R&D program from the Spanish Ministry of Science and Innovation (project AGL2014-56211-R) and a regional program from the Community of Madrid, Spain (S2013/ABI-2728). Conserves Ferrer S.A. and Glucanfeed S.L are acknowledged because of their help by providing the food matrices utilized in the clinical study. HS and SAS acknowledge support from the Netherlands Organisation for Scientific Research through the UNLOCK project (NRGWI.obrug.2018.005).

Funding

This research was supported by a national R&D program from the Spanish Ministry of Science and Innovation (project AGL2014-56211-R), a regional program from the Community of Madrid, Spain (S2013/ABI-2728) and the UNLOCK project (NRGWI.obrug.2018.005) from the Netherlands Organisation for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Morales.

Ethics declarations

Conflict of interest

None.

Ethics approval

The study was approved by the Scientific Research and Ethics Committee of the HULP (La Paz University Hospital) (Code 4813) in accordance with the ethical standards of the Declaration of Helsinki. The study was registered at http://clinicaltrials.gov under the number NCT03550287.

Availability of data and material

Data described in the manuscript are available.

Consent to participate

All subjects gave their informed consent to take part in the study.

Consent for publication

This manuscript is not being simultaneously submitted elsewhere and no portion of the data has been published elsewhere.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (TIFF 743 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, D., Shetty, S.A., López-Plaza, B. et al. Modulation of human intestinal microbiota in a clinical trial by consumption of a β-d-glucan-enriched extract obtained from Lentinula edodes. Eur J Nutr 60, 3249–3265 (2021). https://doi.org/10.1007/s00394-021-02504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02504-4

Keywords

Navigation