Skip to main content

Advertisement

Log in

Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose–response meta-analysis of prospective cohort studies

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

No conclusive information is available about the association between dietary total antioxidant capacity (DTAC) and risk of mortality. Current meta-analysis of prospective cohort studies was done to summarize available findings on the association between DTAC and risk of death from all-cause, cancer and cardiovascular diseases (CVDs).

Methods

Online databases were searched to detect relevant publications up to January 2018, using relevant keywords. To pool data, either fixed-effects or random-effects model was used. Furthermore, linear and non-linear dose–response analyses were also done.

Results

In total, five prospective studies were included in the current systematic review and meta-analysis. In a follow-up period of 4.3–16.5 years, there were 38,449 deaths from all-cause, 4470 from cancer and 2841 from CVDs among 226,297 individuals. A significant inverse association was found between DTAC and all-cause mortality (combined effect size: 0.62, 95% CI 0.60–0.64). Such finding was also seen for cancer (combined effect size: 0.81, 95% CI 0.75–0.88) and CVD (combined effect size: 0.71, 95% CI 0.63–0.82) mortality. Findings from linear dose–response meta-analysis revealed that a 5 mmol/day increment in DTAC based on ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) was associated with 7% and 15% lower risk of all-cause mortality, respectively. Based on findings from non-linear dose–response meta-analysis, a significant reduction in risk of all-cause mortality was seen when increasing FRAP from 2 to 12 mmol/day (P-nonlinearity = 0.002) and ORAC from 5 to 11 mmol/day (P-nonlinearity < 0.001).

Conclusions

Adherence to diet with high total antioxidant capacity was associated with decreased risk of death from all-cause, cancer and CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DTAC:

Dietary total antioxidant capacity

FRAP:

Ferric reducing antioxidant power

TRAP:

Total radical trapping antioxidant parameter

TEAC:

Trolox equivalence antioxidant capacity

ORAC:

Oxygen radical absorbance capacity

OR:

Odds ratio

RR:

Relative risk

HR:

Hazard ratio

FFQ:

Food frequency questionnaire

CVD:

Cardiovascular disease

References

  1. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC (2017) Oxidative stress and cardiovascular risk: obesity, diabetes, smoking, and pollution: part 3 of a 3-part series. J Am Coll Cardiol 70:230–251. https://doi.org/10.1016/j.jacc.2017.05.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robson R, Kundur AR, Singh I (2017) Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr. https://doi.org/10.1016/j.dsx.2017.12.029

    Article  PubMed  Google Scholar 

  4. Xie Z, Lin H, Fang R, Shen W, Li S, Chen B (2015) Effects of a fruit-vegetable dietary pattern on oxidative stress and genetic damage in coke oven workers: a cross-sectional study. Environ Health 14:40. https://doi.org/10.1186/s12940-015-0028-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de la Iglesia R, Lopez-Legarrea P, Celada P, Sanchez-Muniz FJ, Martinez JA, Zulet MA (2013) Beneficial effects of the RESMENA dietary pattern on oxidative stress in patients suffering from metabolic syndrome with hyperglycemia are associated to dietary TAC and fruit consumption. Int J Mol Sci 14:6903–6919. https://doi.org/10.3390/ijms14046903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim K, Vance TM, Chen M-H, Chun OK (2017) Dietary total antioxidant capacity is inversely associated with all-cause and cardiovascular disease death of US adults. Eur J Nutr 57:2469–2476. https://doi.org/10.1007/s00394-017-1519-7

    Article  CAS  PubMed  Google Scholar 

  7. Bastide N, Dartois L, Dyevre V, Dossus L, Fagherazzi G, Serafini M et al (2017) Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr 56:1233–1243

    Article  CAS  PubMed  Google Scholar 

  8. Michaëlsson K, Wolk A, Melhus H, Byberg L (2017) Milk, fruit and vegetable, and total antioxidant intakes in relation to mortality rates: cohort studies in women and men. Am J Epidemiol 185:345–361

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henriquez-Sanchez P, Sánchez-Villegas A, Ruano-Rodríguez C, Gea A, Lamuela-Raventós RM, Estruch R et al (2016) Dietary total antioxidant capacity and mortality in the PREDIMED study. Eur J Nutr 55:227–236

    Article  CAS  PubMed  Google Scholar 

  10. Agudo A, Cabrera L, Amiano P, Ardanaz E, Barricarte A, Berenguer T et al (2007) Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). Am J Clin Nutr 85:1634–1642

    Article  CAS  PubMed  Google Scholar 

  11. Peng C, Luo WP, Zhang CX (2017) Fruit and vegetable intake and breast cancer prognosis: a meta-analysis of prospective cohort studies. Br J Nutr 117:737–749. https://doi.org/10.1017/s0007114517000423

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W et al (2014) Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. Bmj 349:g4490. https://doi.org/10.1136/bmj.g4490

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang Q, Chen Y, Wang X, Gong G, Li G, Li C (2014) Consumption of fruit, but not vegetables, may reduce risk of gastric cancer: results from a meta-analysis of cohort studies. Eur J Cancer 50:1498–1509. https://doi.org/10.1016/j.ejca.2014.02.009

    Article  PubMed  Google Scholar 

  14. Tabernero M, Serrano J, Saura-Calixto F (2006) The antioxidant capacity of cocoa products: contribution to the Spanish diet. Int J Food Sci Technol 41:28–32

    Article  CAS  Google Scholar 

  15. Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M et al (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819

    Article  CAS  PubMed  Google Scholar 

  16. Dietrich M, Jacques P, Pencina M, Lanier K, Keyes M, Kaur G et al (2009) Vitamin E supplement use and the incidence of cardiovascular disease and all-cause mortality in the Framingham Heart Study: Does the underlying health status play a role? Atherosclerosis 205:549–553

    Article  CAS  PubMed  Google Scholar 

  17. Zhao LG, Shu XO, Li HL, Zhang W, Gao J, Sun JW et al (2017) Dietary antioxidant vitamins intake and mortality: A report from two cohort studies of Chinese adults in Shanghai. J Epidemiol 27:89–97. https://doi.org/10.1016/j.je.2016.10.002

    Article  PubMed  Google Scholar 

  18. Buijsse B, Feskens EJ, Kwape L, Kok FJ, Kromhout D (2008) Both alpha- and beta-carotene, but not tocopherols and vitamin C, are inversely related to 15-year cardiovascular mortality in Dutch elderly men. J Nutr 138:344–350

    Article  CAS  PubMed  Google Scholar 

  19. Pellegrini N, Vitaglione P, Granato D, Fogliano V (2018) Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: merits and limitations. J Sci Food Agric. https://doi.org/10.1002/jsfa.9550

    Article  PubMed  Google Scholar 

  20. Fraga CG, Oteiza PI, Galleano M (2014) In vitro measurements and interpretation of total antioxidant capacity. Biochim Biophys Acta 1840:931–934. https://doi.org/10.1016/j.bbagen.2013.06.030

    Article  CAS  PubMed  Google Scholar 

  21. Pompella A, Sies H, Wacker R, Brouns F, Grune T, Biesalski HK et al (2014) The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition 30:791–793. https://doi.org/10.1016/j.nut.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  22. Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230s–242s. https://doi.org/10.1093/ajcn/81.1.230S

    Article  CAS  PubMed  Google Scholar 

  23. Basu A, Morris S, Nguyen A, Betts NM, Fu D, Lyons TJ (2016) Effects of dietary strawberry supplementation on antioxidant biomarkers in obese adults with above optimal serum lipids. J Nutr Metab 2016:3910630. https://doi.org/10.1155/2016/3910630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pinzani P, Petruzzi E, Magnolfi SU, Malentacchi F, De Siena G, Petruzzi I et al (2010) Red or white wine assumption and serum antioxidant capacity. Arch Gerontol Geriatr 51:e72–e74. https://doi.org/10.1016/j.archger.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  25. Koutelidakis AE, Rallidis L, Koniari K, Panagiotakos D, Komaitis M, Zampelas A (2014) Anastasiou-Nana M, Kapsokefalou M. Effect of green tea on postprandial antioxidant capacity, serum lipids, C-reactive protein and glucose levels in patients with coronary artery disease. Eur J Nutr 53:479–486. https://doi.org/10.1007/s00394-013-0548-0

    Article  CAS  PubMed  Google Scholar 

  26. Lettieri-Barbato D, Villaño D, Beheydt B, Guadagni F, Trogh I, Serafini M (2012) Effect of ingestion of dark chocolates with similar lipid composition and different cocoa content on antioxidant and lipid status in healthy humans. Food Chem 132:1305–1310. https://doi.org/10.1016/j.foodchem.2011.11.109

    Article  CAS  PubMed  Google Scholar 

  27. Yang M, Chung SJ, Floegel A, Song WO, Koo SI, Chun OK (2013) Dietary antioxidant capacity is associated with improved serum antioxidant status and decreased serum C-reactive protein and plasma homocysteine concentrations. Eur J Nutr 52:1901–1911. https://doi.org/10.1007/s00394-012-0491-5

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Yang M, Lee SG, Davis CG, Koo SI, Chun OK (2012) Dietary total antioxidant capacity is associated with diet and plasma antioxidant status in healthy young adults. J Acad Nutr Diet 112:1626–1635. https://doi.org/10.1016/j.jand.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  29. Hermsdorff HH, Puchau B, Volp AC, Barbosa KB, Bressan J, Zulet M et al (2011) Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr Metab (Lond) 8:22. https://doi.org/10.1186/1743-7075-8-59

    Article  CAS  Google Scholar 

  30. Zamora-Ros R, Serafini M, Estruch R, Lamuela-Raventós RM, Martínez-González MA, Salas-Salvadó J et al (2013) Mediterranean diet and non enzymatic antioxidant capacity in the PREDIMED study: evidence for a mechanism of antioxidant tuning. Nutr Metab Cardiovasc Dis 23:1167–1174. https://doi.org/10.1016/j.numecd.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  31. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lorente L, Martín MM, Pérez-Cejas A, Abreu-González P, Ramos L, Argueso M et al (2016) Association between total antioxidant capacity and mortality in ischemic stroke patients. Ann Intensive Care 6:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lorente L, Martín MM, Almeida T, Abreu-González P, Ramos L, Argueso M et al (2015) Total antioxidant capacity is associated with mortality of patients with severe traumatic brain injury. BMC Neurol 15:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakhi AK, Russnes KM, Thoresen M, Bastani NE, Karlsen A, Smeland S et al (2009) Pre-radiotherapy plasma carotenoids and markers of oxidative stress are associated with survival in head and neck squamous cell carcinoma patients: a prospective study. BMC Cancer 9:458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lorente L, Martín MM, Almeida T, Abreu-González P, Ferreres J, Solé-Violán J et al (2015) Association between serum total antioxidant capacity and mortality in severe septic patients. J Crit Care 30:217. e217–217. e212

    PubMed  Google Scholar 

  36. Fletcher AE, Breeze E, Shetty PS (2003) Antioxidant vitamins and mortality in older persons: findings from the nutrition add-on study to the Medical Research Council Trial of Assessment and Management of Older People in the Community. Am J Clin Nutr 78:999–1010

    Article  CAS  PubMed  Google Scholar 

  37. Rautiainen S, Levitan EB, Orsini N, Åkesson A, Morgenstern R, Mittleman MA et al (2012) Total antioxidant capacity from diet and risk of myocardial infarction: a prospective cohort of women. Am J Med 125:974–980

    Article  CAS  PubMed  Google Scholar 

  38. Rautiainen S, Larsson S, Virtamo J, Wolk A (2012) Total antioxidant capacity of diet and risk of stroke: a population-based prospective cohort of women. Stroke 43:335–340. https://doi.org/10.1161/strokeaha.111.635557

    Article  CAS  PubMed  Google Scholar 

  39. Lucas AL, Bosetti C, Boffetta P, Negri E, Tavani A, Serafini M et al (2016) Dietary total antioxidant capacity and pancreatic cancer risk: an Italian case–control study. Br J Cancer 115:102–107. https://doi.org/10.1038/bjc.2016.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vance TM, Wang Y, Su LJ, Fontham ET, Steck SE, Arab L et al (2016) Dietary total antioxidant capacity is inversely associated with prostate cancer aggressiveness in a population-based study. Nutr Cancer 68:214–224. https://doi.org/10.1080/01635581.2016.1134596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Del Rio D, Agnoli C, Pellegrini N, Krogh V, Brighenti F, Mazzeo T et al (2011) Total antioxidant capacity of the diet is associated with lower risk of ischemic stroke in a large Italian cohort. J Nutr 141:118–123. https://doi.org/10.3945/jn.110.125120

    Article  CAS  PubMed  Google Scholar 

  42. Rautiainen S, Levitan EB, Mittleman MA, Wolk A (2013) Total antioxidant capacity of diet and risk of heart failure: a population-based prospective cohort of women. Am J Med 126:494–500

    Article  PubMed  Google Scholar 

  43. Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M et al (2015) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute; 2011. oxford. asp

  44. Green S, Higgins J (eds) (2008) The Cochrane handbook for systematic reviews of interventions. Wiley, Chichester

    Google Scholar 

  45. Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135:1301–1309

    Article  CAS  PubMed  Google Scholar 

  46. Orsini N, Bellocco R, Greenland S (2006) Generalized least squares for trend estimation of summarized dose-response data. Stat J 6:40

    Article  Google Scholar 

  47. Harre FE Jr, Lee KL, Pollock BG (1988) Regression models in clinical studies: determining relationships between predictors and response. JNCI 80:1198–1202

    Article  Google Scholar 

  48. Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 29:1282–1297

    Article  PubMed  Google Scholar 

  49. Berlin JA, Longnecker MP, Greenland S (1993) Meta-analysis of epidemiologic dose-response data. Epidemiology 4:218–228

    Article  Google Scholar 

  50. Wong MCS, Fung FDH, Leung C, Cheung WWL, Goggins WB, Ng CF (2018) The global epidemiology of bladder cancer: a joinpoint regression analysis of its incidence and mortality trends and projection. Sci Rep 8:1129. https://doi.org/10.1038/s41598-018-19199-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andersson C, Vasan RS (2017) Epidemiology of cardiovascular disease in young individuals. Nat Rev Cardiol. https://doi.org/10.1038/nrcardio.2017.154

    Article  PubMed  Google Scholar 

  52. Kwasny C, Manuwald U, Kugler J, Rothe U (2017) systematic review of the epidemiology and natural history of the metabolic vascular syndrome and its coincidence with type 2 diabetes mellitus and cardiovascular diseases in different European countries. Horm Metab Res. https://doi.org/10.1055/s-0043-122395

    Article  PubMed  Google Scholar 

  53. Uppal S, Al-Kindi SG, Oliveira GH (2018) Cardiovascular mortality among 76 864 survivors of childhood cancers in the United States: a report from the surveillance, epidemiology, and end-results program. J Cardiovasc Med (Hagerstown) 19:38–41. https://doi.org/10.2459/jcm.0000000000000585

    Article  Google Scholar 

  54. Benisi-Kohansal S, Saneei P, Salehi-Marzijarani M, Larijani B, Esmaillzadeh A (2016) Whole-grain intake and mortality from all causes, cardiovascular disease, and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr 7:1052–1065. https://doi.org/10.3945/an.115.011635

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang JB, Fan JH, Dawsey SM, Sinha R, Freedman ND, Taylor PR et al (2016) Dietary components and risk of total, cancer and cardiovascular disease mortality in the Linxian Nutrition Intervention Trials cohort in China. Sci Rep 6:22619. https://doi.org/10.1038/srep22619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pantavos A, Ruiter R, Feskens EF, de Keyser CE, Hofman A, Stricker BH et al (2015) Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: the Rotterdam Study. Int J Cancer 136:2178–2186. https://doi.org/10.1002/ijc.29249

    Article  CAS  PubMed  Google Scholar 

  57. Serafini M, Jakszyn P, Lujan-Barroso L, Agudo A, Bas Bueno-de-Mesquita H, van Duijnhoven FJ et al (2012) Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer 131:E544–E554. https://doi.org/10.1002/ijc.27347

    Article  CAS  PubMed  Google Scholar 

  58. Schwingshackl L, Hoffmann G (2014) Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int J Cancer 135:1884–1897. https://doi.org/10.1002/ijc.28824

    Article  CAS  PubMed  Google Scholar 

  59. Perez-Jimenez J, Diaz-Rubio ME, Saura-Calixto F (2015) Contribution of macromolecular antioxidants to dietary antioxidant capacity: a study in the Spanish mediterranean diet. Plant Foods Hum Nutr 70:365–370. https://doi.org/10.1007/s11130-015-0513-6

    Article  CAS  PubMed  Google Scholar 

  60. Chang ET, Lee VS, Canchola AJ, Clarke CA, Purdie DM, Reynolds P et al (2007) Diet and risk of ovarian cancer in the California Teachers Study cohort. Am J Epidemiol 165:802–813. https://doi.org/10.1093/aje/kwk065

    Article  PubMed  Google Scholar 

  61. Vece MM, Agnoli C, Grioni S, Sieri S, Pala V, Pellegrini N et al (2015) Dietary total antioxidant capacity and colorectal cancer in the Italian EPIC cohort. PLoS One 10:e0142995. https://doi.org/10.1371/journal.pone.0142995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim K, Vance TM, Chun OK (2016) Greater total antioxidant capacity from diet and supplements is associated with a less atherogenic blood profile in US adults. Nutrients 8:15

    Article  CAS  PubMed Central  Google Scholar 

  63. Yang M, Chung S-J, Floegel A, Song WO, Koo SI, Chun OK (2013) Dietary antioxidant capacity is associated with improved serum antioxidant status and decreased serum C-reactive protein and plasma homocysteine concentrations. Eur J Nutr 52:1901–1911

    Article  CAS  PubMed  Google Scholar 

  64. Franklin SS, Wong ND (2013) Hypertension and cardiovascular disease: contributions of the Framingham Heart Study. Global heart 8:49–57

    Article  PubMed  Google Scholar 

  65. Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB et al (2001) Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 345:1291–1297

    Article  CAS  PubMed  Google Scholar 

  66. Devore EE, Feskens E, Ikram MA, den Heijer T, Vernooij M, van der Lijn F et al (2013) Total antioxidant capacity of the diet and major neurologic outcomes in older adults. Neurology 80:904–910. https://doi.org/10.1212/WNL.0b013e3182840c84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stefanson AL, Bakovic M (2014) Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 6:3777–3801. https://doi.org/10.3390/nu6093777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim Y, Je Y (2014) Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol 180:565–573. https://doi.org/10.1093/aje/kwu174

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported jointly by Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, and Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MN, JAS, MP, SRK and MK contributed to conception, design, statistical analyses, data interpretation and manuscript drafting. OS and MP contributed to data analysis, data interpretation and manuscript drafting. All authors approved the final manuscript for submission.

Corresponding author

Correspondence to Omid Sadeghi.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 693 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parohan, M., Anjom-Shoae, J., Nasiri, M. et al. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose–response meta-analysis of prospective cohort studies. Eur J Nutr 58, 2175–2189 (2019). https://doi.org/10.1007/s00394-019-01922-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-01922-9

Keywords

Navigation