Skip to main content

Advertisement

Log in

Unsaturated fatty acids repress the expression of adipocyte fatty acid binding protein via the modulation of histone deacetylation in RAW 264.7 macrophages

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Adipocyte fatty acid binding protein (A-FABP) present in macrophages has been implicated in the integration of lipid metabolism and inflammatory response, contributing to development of insulin resistance and atherosclerosis.

Aim of the study

This study was conducted to test the hypothesis that the role of fatty acids in the inflammatory pathways is mediated through the modulation of A-FABP expression in macrophages.

Methods

Murine RAW 264.7 macrophages were treated with inflammatory insults and fatty acids for quantitative real-time PCR and Western blot analysis. The cells were treated with trichostatin A (TSA), a histone deacetylase inhibitor, for elucidating mechanisms for the regulation of A-FABP expression by fatty acids. RNA interference (RNAi) to knock down A-FABP was utilized to assess its role in inflammatory gene expression.

Results

When RAW 264.7 were incubated with lipopolysaccharides (LPS; 100 ng/ml) or 2.5 ng/ml of tumor necrosis factor α for 18 h, A-FABP mRNA and protein levels were drastically increased. Unsaturated fatty acids (100 μmol/l in complexed with BSA) such as palmitoleic acid, oleic acid, linoleic acid, linolenic acid, and eicosapentaenoic acid, significantly repressed the basal as well as LPS-induced A-FABP expression, whereas palmitic acid did not elicit the same effect. TSA increased A-FABP mRNA levels and abolished the repressive effect of linoleic acid on A-FABP expression in unstimulated and LPS-stimulated macrophages. Depletion of A-FABP expression by 70–80% using RNAi markedly decreased cyclooxygenase 2 mRNA abundance and potentiated the repression by linoleic acid.

Conclusion

Unsaturated fatty acids inhibited the basal as well as LPS-induced A-FABP expression. The mechanism may involve histone deacetylation and anti-inflammatory effect of unsaturated fatty acids may be at least in part attributed to their repression of A-FABP expression in RAW 264.7 macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A-FABP:

Adipocyte fatty acid binding protein

AP-1:

Activator protein 1

BSA:

Bovine serum albumin

COX-2:

Cyclooxygenase 2

CVD:

Cardiovascular disease

FBS:

Fetal bovine serum

HDACi:

Histone deacetylase inhibitor

IKK:

I kappa B kinase

IL-1β:

Interleukin-1β

LPS:

Lipopolysaccharides

MAPK:

Mitogen-activated protein kinases

MCP-1:

Monocyte chemoattractant protein 1

NF-κB:

Nuclear factor kappa B

PPARγ:

Peroxisome proliferator-activated receptor γ

qPCR:

Quantitative real-time PCR

siRNA:

Small interfering RNA

TNFα:

Tumor necrosis factor α

TSA:

Trichostatin A

References

  1. Hertzel AV, Bernlohr DA (2000) The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 11:175–180

    Article  CAS  Google Scholar 

  2. Boord JB, Fazio S, Linton MF (2002) Cytoplasmic fatty acid-binding proteins: emerging roles in metabolism and atherosclerosis. Curr Opin Lipidol 13:141–147

    Article  CAS  Google Scholar 

  3. Boord JB, Maeda K, Makowski L, Babaev VR, Fazio S, Linton MF, Hotamisligil GS (2002) Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia. Arterioscler Thromb Vasc Biol 22:1686–1691

    Article  CAS  Google Scholar 

  4. Makowski L, Hotamisligil GS (2004) Fatty acid binding proteins–the evolutionary crossroads of inflammatory and metabolic responses. J Nutr 134:2464S–2468S

    CAS  Google Scholar 

  5. Cook KS, Hunt CR, Spiegelman BM (1985) Developmentally regulated mRNAs in 3T3-adipocytes: analysis of transcriptional control. J Cell Biol 100:514–520

    Article  CAS  Google Scholar 

  6. Bernlohr DA, Bolanowski MA, Kelly TJ Jr, Lane MD (1985) Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3–L1 preadipocytes. J Biol Chem 260:5563–5567

    CAS  Google Scholar 

  7. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM (1996) Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274:1377–1379

    Article  CAS  Google Scholar 

  8. Uysal KT, Scheja L, Wiesbrock SM, Bonner-Weir S, Hotamisligil GS (2000) Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 141:3388–3396

    Article  CAS  Google Scholar 

  9. Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, Cao Q, Atsumi G, Malone H, Krishnan B, Minokoshi Y, Kahn BB, Parker RA, Hotamisligil GS (2005) Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab 1:107–119

    Article  CAS  Google Scholar 

  10. Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS, Linton MF (2001) Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7:699–705

    Article  CAS  Google Scholar 

  11. Layne MD, Patel A, Chen YH, Rebel VI, Carvajal IM, Pellacani A, Ith B, Zhao D, Schreiber BM, Yet SF, Lee ME, Storch J, Perrella MA (2001) Role of macrophage-expressed adipocyte fatty acid binding protein in the development of accelerated atherosclerosis in hypercholesterolemic mice. FASEB J 15:2733–2735

    CAS  Google Scholar 

  12. Yeung DC, Xu A, Cheung CW, Wat NM, Yau MH, Fong CH, Chau MT, Lam KS (2007) Serum adipocyte fatty acid-binding protein levels were independently associated with carotid atherosclerosis. Arterioscler Thromb Vasc Biol 27:1796–1802

    Article  CAS  Google Scholar 

  13. Furuhashi M, Tuncman G, Gorgun CZ, Makowski L, Atsumi G, Vaillancourt E, Kono K, Babaev VR, Fazio S, Linton MF, Sulsky R, Robl JA, Parker RA, Hotamisligil GS (2007) Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447:959–965

    Article  CAS  Google Scholar 

  14. Tuncman G, Erbay E, Hom X, De Vivo I, Campos H, Rimm EB, Hotamisligil GS (2006) A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc Natl Acad Sci USA 103:6970–6975

    Article  CAS  Google Scholar 

  15. Fisher RM, Eriksson P, Hoffstedt J, Hotamisligil GS, Thorne A, Ryden M, Hamsten A, Arner P (2001) Fatty acid binding protein expression in different adipose tissue depots from lean and obese individuals. Diabetologia 44:1268–1273

    Article  CAS  Google Scholar 

  16. Stejskal D, Karpisek M (2006) Adipocyte fatty acid binding protein in a Caucasian population: a new marker of metabolic syndrome? Eur J Clin Invest 36:621–625

    Article  CAS  Google Scholar 

  17. Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, Wat NM, Wong WK, Lam KS (2006) Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52:405–413

    Article  CAS  Google Scholar 

  18. Cabre A, Lazaro I, Girona J, Manzanares JM, Marimon F, Plana N, Heras M, Masana L (2007) Fatty acid binding protein 4 is increased in metabolic syndrome and with thiazolidinedione treatment in diabetic patients. Atherosclerosis 195:e150–e158

    Article  CAS  Google Scholar 

  19. Xu A, Tso AW, Cheung BM, Wang Y, Wat NM, Fong CH, Yeung DC, Janus ED, Sham PC, Lam KS (2007) Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation 115:1537–1543

    Article  CAS  Google Scholar 

  20. Bagheri R, Qasim AN, Mehta NN, Terembula K, Kapoor S, Braunstein S, Schutta M, Iqbal N, Lehrke M, Reilly MP (2010) Relation of plasma Fatty Acid binding proteins 4 and 5 with the metabolic syndrome, inflammation and coronary calcium in patients with type-2 diabetes mellitus. Am J Cardiol 106:1118–1123

    Article  CAS  Google Scholar 

  21. Helledie T, Antonius M, Sorensen RV, Hertzel AV, Bernlohr DA, Kolvraa S, Kristiansen K, Mandrup S (2000) Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. J Lipid Res 41:1740–1751

    CAS  Google Scholar 

  22. Makowski L, Hotamisligil GS (2005) The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr Opin Lipidol 16:543–548

    Article  CAS  Google Scholar 

  23. Wang S, Wu D, Lamon-Fava S, Matthan NR, Honda KL, Lichtenstein AH (2009) In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation. Br J Nutr 102:497–501

    Article  CAS  Google Scholar 

  24. Chang CS, Sun HL, Lii CK, Chen HW, Chen PY, Liu KL (2010) Gamma-linolenic acid inhibits inflammatory responses by regulating NF-kappaB and AP-1 activation in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammation 33:46–57

    Article  CAS  Google Scholar 

  25. Park YK, Rasmussen HE, Ehler SJ, Blobaum KR, Lu F, Schlegel VL, Carr TP, Lee JY (2008) Repression of proinflammatory gene expression by lipid extract of Nostoc commune var sphaeroides Kutzing, a blue-green alga, via inhibition of nuclear factor-kappa B in RAW 264.7 macrophages. Nutr Res 28:83–92

    Article  CAS  Google Scholar 

  26. Rasmussen HE, Blobaum KR, Park YK, Ehlers SJ, Lu F, Lee JY (2008) Lipid extract of Nostoc commune var. sphaeroides Kutzing, a blue-green alga, inhibits the activation of sterol regulatory element binding proteins in HepG2 cells. Nutr J 138:476–481

    CAS  Google Scholar 

  27. Kazemi MR, McDonald CM, Shigenaga JK, Grunfeld C, Feingold KR (2005) Adipocyte fatty acid-binding protein expression and lipid accumulation are increased during activation of murine macrophages by toll-like receptor agonists. Arterioscler Thromb Vasc Biol 25:1220–1224

    Article  CAS  Google Scholar 

  28. Pelton PD, Zhou L, Demarest KT, Burris TP (1999) PPARgamma activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem Biophys Res Commun 261:456–458

    Article  CAS  Google Scholar 

  29. Hu E, Kim JB, Sarraf P, Bruce M, Spiegelman N (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274:2100–2103

    Article  CAS  Google Scholar 

  30. Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor gamma Is Inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132

    Article  CAS  Google Scholar 

  31. Camp HS, Tafuri SR, Leff T (1999) C-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma 1 and negatively regulates its transcriptional activity. Endocrinology 140:392–397

    Article  CAS  Google Scholar 

  32. Necela BM, Su W, Thompson EA (2008) Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor gamma and nuclear factor-kappaB in macrophages. Immunology 125:344–358

    Article  CAS  Google Scholar 

  33. Distel RJ, Ro HS, Rosen BS, Groves DL, Spiegelman BM (1987) Nucleoprotein complexes that regulate gene expression in adipocyte differentiation: direct participation of c-fos. Cell 49:835–844

    Article  CAS  Google Scholar 

  34. Rauscher FJ 3rd, Sambucetti LC, Curran T, Distel RJ, Spiegelman BM (1988) Common DNA binding site for fos protein complexes and transcription factor AP-1. Cell 52:471–480

    Article  CAS  Google Scholar 

  35. Christy RJ, Yang VW, Ntambi JM, Geiman DE, Landschulz WH, Friedman AD, Nakabeppu Y, Kelly TJ, Lane MD (1989) Differentiation-induced gene expression in 3T3–L1 preadipocytes: CCAAT/enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dev 3:1323–1335

    Article  CAS  Google Scholar 

  36. Herrera R, Ro HS, Robinson GS, Xanthopoulos KG, Spiegelman BM (1989) A direct role for C/EBP and the AP-I-binding site in gene expression linked to adipocyte differentiation. Mol Cell Biol 9:5331–5339

    CAS  Google Scholar 

  37. Hui X, Li H, Zhou Z, Lam KSL, Xiao Y, Wu D, Ding K, Wang Y, Vanhoutte PM, Xu A (2010) Adipocyte fatty acid-binding protein modulates inflammatory responses in macrophages through a positive feedback loop involving c-Jun NH2-terminal kinases and activator protein-1. J Biol Chem 285:10273–10280

    Article  CAS  Google Scholar 

  38. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497

    CAS  Google Scholar 

  39. Della Ragione F, Criniti V, Della Pietra V, Borriello A, Oliva A, Indaco S, Yamamoto T, Zappia V (2001) Genes modulated by histone acetylation as new effectors of butyrate activity. FEBS Lett 499:199–204

    Article  CAS  Google Scholar 

  40. Mariadason JM, Corner GA, Augenlicht LH (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res 60:4561–4572

    CAS  Google Scholar 

  41. Van Lint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5:245–253

    Google Scholar 

  42. Zhang J, Kalkum M, Chait BT, Roeder RG (2002) The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 9:611–623

    Article  CAS  Google Scholar 

  43. Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116:511–526

    Article  CAS  Google Scholar 

  44. Lee SK, Kim JH, Lee YC, Cheong J, Lee JW (2000) Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor. J Biol Chem 275:12470–12474

    Article  CAS  Google Scholar 

  45. Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110:55–67

    Article  CAS  Google Scholar 

  46. Wagner BL, Valledor AF, Shao G, Daige CL, Bischoff ED, Petrowski M, Jepsen K, Baek SH, Heyman RA, Rosenfeld MG, Schulman IG, Glass CK (2003) Promoter-Specific Roles for Liver X Receptor/Corepressor Complexes in the Regulation of ABCA1 and SREBP1 Gene Expression. Mol Cell Biol 23:5780–5789

    Article  CAS  Google Scholar 

  47. Herschman HR (1996) Prostaglandin synthase 2. Biochim Biophys Acta 1299:125–140

  48. Schonbeck U, Sukhova GK, Graber P, Coulter S, Libby P (1999) Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am J Pathol 155:1281–1291

    Article  CAS  Google Scholar 

  49. Belton OA, Duffy A, Toomey S, Fitzgerald DJ (2003) Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation 108:3017–3023

    Article  CAS  Google Scholar 

  50. McGettigan P, Henry D (2006) Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 296:1633–1644

    Article  CAS  Google Scholar 

  51. Solomon SD, Pfeffer MA, McMurray JJ, Fowler R, Finn P, Levin B, Eagle C, Hawk E, Lechuga M, Zauber AG, Bertagnolli MM, Arber N, Wittes J (2006) Effect of celecoxib on cardiovascular events and blood pressure in two trials for the prevention of colorectal adenomas. Circulation 114:1028–1035

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Science Foundation-EPSCoR grant EPS-0346476.

Conflicts of interest

All authors read and approved the final manuscript and have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, S.L., Park, YK. & Lee, JY. Unsaturated fatty acids repress the expression of adipocyte fatty acid binding protein via the modulation of histone deacetylation in RAW 264.7 macrophages. Eur J Nutr 50, 323–330 (2011). https://doi.org/10.1007/s00394-010-0140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-010-0140-9

Keywords

Navigation