Skip to main content

Advertisement

Log in

Mesenchymale Stamm-/Stromazellen

Therapeutisches Potenzial in der Behandlung von Autoimmunerkrankungen

Mesenchymal stem/stroma cells

Therapeutic potential in the treatment of autoimmune diseases

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Mesenchymale Stamm- oder Stromazellen (MSC) werden zur Behandlung autoimmuner und autoinflammatorischer Prozesse propagiert. Die Gewinnung dieser Zellen ist relativ einfach aus unterschiedlichen Geweben möglich. In vitro sowie in Tiermodellen haben MSC antiinflammatorische und immunsuppressive Eigenschaften. Es liegen erste Daten zum Einsatz von MSC bei unterschiedlichen Erkrankungen vor, teils mit vielversprechenden Resultaten, wobei bislang praktisch keine Toxizität berichtet wird. Allerdings fehlen Daten aus Phase-III-Studien. Viele Fragen zur Verwendung von MSC sind aber noch nicht geklärt. Die verwendeten MSC-Präparationen sind heterogen und unterscheiden sich auch je nach Ursprungsgewebe. Es ist nicht endgültig geklärt, ob autologe (eigene) oder allogene (fremde) MSC besser für den therapeutischen Einsatz geeignet sind. Langzeitfolgen wie eine mögliche maligne Transformation und die Begünstigung des Wachstums endogener Tumoren sind nicht gänzlich ausgeschlossen. Letztlich werden diese Fragen nur über kontrollierte randomisierte Studien für definierte klinische Indikationen mit definierten MSC beantwortet werden können.

Abstract

Mesenchymal stem and stromal cells (MSC) are propagated for the treatment of autoimmune and autoinflammatory processes. These cells can be relatively easily obtained from various tissues. The MSC feature anti-inflammatory and immunosuppressive properties in vitro as well as in animal models. Initial reports on the clinical application of MSC for various diseases are available, some with promising results and so far no reported toxicity; however, data from phase III studies are still lacking and crucial questions are still unanswered. The MSC preparations used are heterogeneous and also differ depending on the source and it is unclear whether autologous (own) or allogeneic (foreign) MSC are more suitable for therapeutic use. Long-term consequences, such as possible malignant transformation and possible endogenous tumor growth stimulation cannot be completely excluded. Ultimately, these questions can only be answered through randomized controlled trials for defined clinical indications with defined MSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Murray IR, Péault B (2015) Q&A: Mesenchymal stem cells – where do they come from and is it important? Bmc Biol 13:99

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rasini V et al (2013) Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy 15:292–306

    Article  CAS  PubMed  Google Scholar 

  3. Jones E, Schäfer R (2015) Biological differences between native and cultured mesenchymal stem cells: implications for therapies. Methods Mol Biol Clifton NJ 1235:105–120

    Article  CAS  Google Scholar 

  4. Schäfer R et al (2006) Progress in characterization, preparation and clinical applications of non-hematopoietic stem cells, 29–30 September. Cytotherapy 9(2007):397–405

    Google Scholar 

  5. Guo KT et al (2006) A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells Dayt Ohio 24:2220–2231

    Article  CAS  Google Scholar 

  6. Schäfer R (2013) Does the adult stroma contain stem cells? Adv Biochem Eng Biotechnol 129:177–189

    PubMed  Google Scholar 

  7. Ulrich C et al (2015) Human Placenta-Derived CD146-Positive Mesenchymal Stromal Cells Display a Distinct Osteogenic Differentiation Potential. Stem Cells Dev 24:1558–1569

    Article  CAS  PubMed  Google Scholar 

  8. Churchman SM et al (2012) Transcriptional profile of native CD271+ multipotential stromal cells: evidence for multiple fates, with prominent osteogenic and Wnt pathway signaling activity. Arthritis Rheum 64:2632–2643

    Article  CAS  PubMed  Google Scholar 

  9. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells Dayt Ohio 24:1294–1301

    Article  CAS  Google Scholar 

  10. Samsonraj RM et al (2015) Establishing criteria for human mesenchymal stem cell potency. Stem Cells Dayt Ohio 33:1878–1891

    Article  CAS  Google Scholar 

  11. Bernardo ME et al (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149

    Article  CAS  PubMed  Google Scholar 

  12. Stultz BG et al (2016) Chromosomal stability of mesenchymal stromal cells during in vitro culture. Cytotherapy 18:336–343

    Article  CAS  PubMed  Google Scholar 

  13. Mathew E et al (2016) Mesenchymal Stem Cells Promote Pancreatic Tumor Growth by Inducing Alternative Polarization of Macrophages. Neoplasia N Y N 18:142–151

    Article  CAS  Google Scholar 

  14. Luo F et al (2016) Bone marrow mesenchymal stem cells participate in prostate carcinogenesis and promote growth of prostate cancer by cell fusion in vivo. Oncotarget. doi:10.18632/oncotarget.9045

    Google Scholar 

  15. Rhee K‑J, Lee JI, Eom YW (2015) Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. Int J Mol Sci 16:30015–30033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jonsdottir-Buch SM, Sigurgrimsdottir H, Lieder R, Sigurjonsson OE (2015) Expired and Pathogen-Inactivated Platelet Concentrates Support Differentiation and Immunomodulation of Mesenchymal Stromal Cells in Culture. Cell Transplant 24:1545–1554

    Article  PubMed  Google Scholar 

  17. Bieback K et al (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells Dayt Ohio 27:2331–2341

    Article  CAS  Google Scholar 

  18. D’souza N et al (2015) Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 13:186

    Article  PubMed  PubMed Central  Google Scholar 

  19. Horwitz EM et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  PubMed  Google Scholar 

  21. Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359

    Article  CAS  PubMed  Google Scholar 

  22. Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60

    CAS  PubMed  Google Scholar 

  23. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  24. Schäfer R, Northoff H (2008) Characteristics of Mesenchymal Stem Cells – New Stars in Regenerative Medicine or Unrecognized Old Fellows in Autologous Regeneration? Transfus Med Hemotherapy Off Organ Dtsch Ges Transfusionsmedizin Immunhamatologie 35:154–159

    Google Scholar 

  25. Rose RA et al (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells Dayt Ohio 26:2884–2892

    Article  CAS  Google Scholar 

  26. Iso Y et al (2007) Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 354:700–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ringdén O et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397

    Article  PubMed  Google Scholar 

  28. Jitschin R et al (2013) Alterations in the cellular immune compartment of patients treated with third-party mesenchymal stromal cells following allogeneic hematopoietic stem cell transplantation. Stem Cells Dayt Ohio 31:1715–1725

    Article  CAS  Google Scholar 

  29. Jones S, Horwood N, Cope A, Dazzi F (2007) The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol Balt Md 1950(179):2824–2831

    Google Scholar 

  30. Siegel G, Schäfer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87:45–49

    Article  Google Scholar 

  31. Ketterl N et al (2015) A robust potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell immune modulatory capacity and extended radio-resistance. Stem Cell Res Ther 6:236

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fontaine MJ, Shih H, Schäfer R, Pittenger MF (2016) Unraveling the Mesenchymal Stromal Cells’ Paracrine Immunomodulatory Effects. Transfus Med Rev 30:37–43

    Article  PubMed  Google Scholar 

  33. Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402

    Article  CAS  PubMed  Google Scholar 

  34. Dang R‑J et al (2016) plays a critical role in the immunoregulatory function of mesenchymal stem cells. J Cell Mol Med A20. doi:10.1111/jcmm.12849

    PubMed  PubMed Central  Google Scholar 

  35. Chan JL et al (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107:4817–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuçi Z et al (2013) Clonal analysis of multipotent stromal cells derived from CD271+ bone marrow mononuclear cells: functional heterogeneity and different mechanisms of allosuppression. Haematologica 98:1609–1616

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cipriani P et al (2013) Scleroderma Mesenchymal Stem Cells display a different phenotype from healthy controls; implications for regenerative medicine. Angiogenesis 16:595–607

    Article  CAS  PubMed  Google Scholar 

  38. Hegner B et al (2016) Intrinsic Deregulation of Vascular Smooth Muscle and Myofibroblast Differentiation in Mesenchymal Stromal Cells from Patients with Systemic Sclerosis. PLoS ONE 11:e0153101

    Article  PubMed  PubMed Central  Google Scholar 

  39. Larghero J et al (2008) Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann Rheum Dis 67:443–449

    Article  CAS  PubMed  Google Scholar 

  40. Maria ATJ et al (2016) Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis. J Autoimmun. doi:10.1016/j.jaut.2016.03.013

    PubMed  Google Scholar 

  41. Christopeit M et al (2008) Marked improvement of severe progressive systemic sclerosis after transplantation of mesenchymal stem cells from an allogeneic haploidentical-related donor mediated by ligation of CD137L. Leukemia 22:1062–1064

    Article  CAS  PubMed  Google Scholar 

  42. Keyszer G et al (2011) Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors: report of five cases. Arthritis Rheum 63:2540–2542

    Article  PubMed  Google Scholar 

  43. Guiducci S et al (2010) Autologous mesenchymal stem cells foster revascularization of ischemic limbs in systemic sclerosis: a case report. Ann Intern Med 153:650–654

    Article  PubMed  Google Scholar 

  44. Khimdas S et al (2011) Associations with digital ulcers in a large cohort of systemic sclerosis: results from the Canadian Scleroderma Research Group registry. Arthritis Care Res 63:142–149

    Article  Google Scholar 

  45. Bérezné A et al (2011) Impact of systemic sclerosis on occupational and professional activity with attention to patients with digital ulcers. Arthritis Care Res 63:277–285

    Article  Google Scholar 

  46. Guillaume-Jugnot P et al (2016) Autologous adipose-derived stromal vascular fraction in patients with systemic sclerosis: 12-month follow-up. Rheumatol Oxf Engl 55:301–306

    Article  Google Scholar 

  47. Scuderi N et al (2013) Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell Transplant 22:779–795

    Article  PubMed  Google Scholar 

  48. Del Papa N et al (2015) Autologous fat grafting in the treatment of fibrotic perioral changes in patients with systemic sclerosis. Cell Transplant 24:63–72

    Article  PubMed  Google Scholar 

  49. Del Papa N et al (2015) Regional implantation of autologous adipose tissue-derived cells induces a prompt healing of long-lasting indolent digital ulcers in patients with systemic sclerosis. Cell Transplant 24:2297–2305

    Article  PubMed  Google Scholar 

  50. Doria A, Gatto M, Zen M, Iaccarino L, Punzi L (2014) Optimizing outcome in SLE: treating-to-target and definition of treatment goals. Autoimmun Rev 13:770–777

    Article  CAS  PubMed  Google Scholar 

  51. Nie Y, Lau C, Lie A, Chan G, Mok M (2010) Defective phenotype of mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 19:850–859

    Article  CAS  PubMed  Google Scholar 

  52. Zhou K et al (2008) Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice. Cell Mol Immunol 5:417–424

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang D et al (2014) Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 16:R79

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang D et al (2013) Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant 22:2267–2277

    Article  PubMed  Google Scholar 

  55. Ciccocioppo R, Cangemi GC, Kruzliak P, Corazza GR (2016) Cellular therapies: The potential to regenerate and restore tolerance in immune-mediated intestinal diseases. Stem Cells Dayt Ohio. doi:10.1002/stem.2367

    Google Scholar 

  56. Carrion F et al (2010) Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 19:317–322

    Article  CAS  PubMed  Google Scholar 

  57. Forbes GM et al (2014) A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc 12:64–71

    Google Scholar 

  58. Ciccocioppo R et al (2015) Long-Term Follow-Up of Crohn Disease Fistulas After Local Injections of Bone Marrow-Derived Mesenchymal Stem Cells. Mayo Clin Proc 90:747–755

    Article  PubMed  Google Scholar 

  59. Uccelli A, Laroni A, Freedman MS (2013) Mesenchymal stem cells as treatment for MS - progress to date. Mult Scler Houndmills Basingstoke Engl 19:515–519

    Article  CAS  Google Scholar 

  60. Le Blanc K et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet Lond Engl 363:1439–1441

    Article  Google Scholar 

  61. Rizk M et al (2016) Heterogeneity in studies of mesenchymal stromal cells to treat or prevent GVHD: a scoping review of the evidence. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transpl. doi:10.1016/j.bbmt.2016.04.010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Daikeler.

Ethics declarations

Interessenkonflikt

R. Schäfer und T. Daikeler geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

J. Henes, Tübingen

I. Kötter, Hamburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, R., Daikeler, T. Mesenchymale Stamm-/Stromazellen. Z Rheumatol 75, 786–794 (2016). https://doi.org/10.1007/s00393-016-0161-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-016-0161-8

Schlüsselwörter

Keywords

Navigation