Skip to main content
Log in

Klinik der autoinflammatorischen Erkrankungen im Kindesalter

Autoinflammatory diseases in childhood

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Autoinflammatorische Erkrankungen (AI) stellen eine Gruppe monogenetischer entzündlicher Erkrankungen dar, die durch frühkindlichen Beginn charakterisiert werden. Diese Erkrankungen hat man früher als „periodische Fiebersyndrome“ bezeichnet. Es werden zu diesen AI einerseits das familiäre Mittelmeerfieber, die Mevalonatkinasedefizienz (Hyper-IgD-Syndrom) und das „Tumornekrosefaktor-rezeptorassoziierte Syndrom“ (TRAPS) gezählt. Diese werden durch periodische oder rezidivierende Schübe von systemischer Entzündungsaktivität mit einhergehendem Fieber häufig mit Ausschlag, Serositis, Lymphadenopathie, Arthritis und anderen klinischen Manifestationen assoziiert. Die andere große Gruppe der AI stellt CAPS (Cryopyrin-assoziertes periodisches Syndrom) dar. Dieses umfasst ein Spektrum von chronischen autoinflammtorischen Erkrankungen (Cryopyrinopathien). Die mildeste Form ist die familiäre Kälteurtikaria (FCAS, „familial cold associated syndrome“), beeinträchtigender das Muckle-Wells-Syndrom (MWS) und die schwerste Form ist das „neonatal-onset multisystem inflammatory disease/chronic infantile neurological cutaneous and articular syndrome“ (NOMID/CINCA). Diese werden durch chronische oder rezidivierende systemische Entzündung mit verschiedenen klinischen Erscheinungen gekennzeichnet, wie urtikariaartiger Ausschlag, Arthritis, sensoneuronaler Hörverlust und Beteiligung des Zentralnervensystems und des Knochensystems. In unserer Übersichtsarbeit werden wir uns auf die klinische Präsentation dieser Erkrankungen konzentrieren.

Abstract

Autoinflammatory diseases are a group of monogenic inflammatory diseases with an early onset in childhood. Previously these diseases were summarized as“periodic fever syndromes.” Included in this spectrum are familial Mediterranean fever, mevalonate kinase deficiency, and tumor necrosis factor receptor-associated disease. They are characterized by periodic or recurrent episodes of systemic inflammation causing fever, accompanied by rash, serositis, lymphadenopathy, arthritis, and other clinical manifestations. The other large group of autoinflammatory diseases consists of the cryopyrin-associated periodic syndromes, which include the cryopyrinopathies. The mildest form is familial cold-associated syndrome, a more severe form is Muckle–Wells syndrome, and the most severe is neonatal-onset multisystem inflammatory disease/chronic infantile neurological cutaneous and articular syndrome. These are characterized by chronic or recurrent systemic inflammation associated with various clinical presentations, including urticaria-like rash, arthritis, sensorineural deafness, and central nervous system and bone involvement. In our review we focus on the clinical presentation of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Touitou I, Hentgen V, Kone-Paut I (2009) Diseases obotFRCfA-I. Web resources for rare auto-inflammatory diseases: towards a commin patient registry. Rheumatology (Oxford) 48:665–669

    Google Scholar 

  2. Glaser RL, Goldbach-Mansky R (2008) The spectrum of monogenic autoinflammatory syndromes: understanding disease mechanisms and use of targeted therapies. Curr Allergy Asthma Rep 8(4):288–298

    Article  CAS  PubMed  Google Scholar 

  3. Touitou I, Sarkisian T, Medlej-Hashim M et al (2007) Country as the primary risk factor for renal amyloidosis in familial Mediterranean fever. Arthritis Rheum 56(5):1706–1712

    Article  PubMed  Google Scholar 

  4. Duzova A, Bakkaloglu A, Besabs N et a (2003) Role of A-SAA in monitoring subclinicla inflammatin an in colchicine dosage in familial Mediterranean fever. Clin Exp Rheumatol 21:509–514

    CAS  PubMed  Google Scholar 

  5. Livneh A, Langevitz P, Zemer D et al (1997) Criteria for the diagnosis of familial Mediterranean fever. Arthritis Rheum 40(10):1879–1885

    Article  CAS  PubMed  Google Scholar 

  6. Gattorno M, Sormani MP, D’Osualdo A et al (2008) A diagnostic score for molecular analysis of hereditary autoinflammatory syndromes with periodic fever in children. Arthritis Rheum 58(6):1823–1832

    Article  CAS  PubMed  Google Scholar 

  7. Yalcinkaya F, Ozen S, Ozcakar ZB et al (2009) A new set of criteria for the diagnosis of familial Mediterranean fever in childhood. Rheumatology (Oxford) 48(4):395–398

    Google Scholar 

  8. Federici L, Rittore-Domingo C, Kone-Paut I et al (2006) A decision tree for genetic diagnosis of hereditary periodic fever in unselected patients. Ann Rheum Dis 65(11):1427–1432

    Article  CAS  PubMed  Google Scholar 

  9. Padeh S, Shinar Y, Pras E et al (2003) Clinical and diagnositc value of genetic testing in 216 israeli children with familial mediterranean fever. J Rheumatol 30:185–190

    PubMed  Google Scholar 

  10. Cuisset L, Drenth JP, Simon A et al (2001) Molecular analysis of MVK mutations and enzymatic activity in hyper-IgD and periodic fever syndrome. Eur J Hum Genet 9(4):260–266

    Article  CAS  PubMed  Google Scholar 

  11. Frenkel J, Houten SM, Waterham HR et al (2000) Mevalonate kinase deficiency and Dutch type periodic fever. Clin Exp Rheumatol 18(4):525–532

    CAS  PubMed  Google Scholar 

  12. van der Hilst JC, Bodar EJ, Barron KS et al (2008) Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. Medicine (Baltimore) 87(6):301–310

    Google Scholar 

  13. Lachmann HJ, Hawkins PN (2009) Developments in the scientific and clinical understanding of autoinflammatory disorders. Arthritis Res Ther 11(1):212

    Article  PubMed  CAS  Google Scholar 

  14. Hull KM, Drewe E, Aksentijevich I et al (2002) The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder. Medicine (Baltimore) 81(5):349–368

    Google Scholar 

  15. Drewe E, McDermott EM, Powell PT et al (2003) Prospective study of anti-tumour necrosis factor receptor superfamily 1B fusion protein, and case study of anti-tumour necrosis factor receptor superfamily 1A fusion protein, in tumour necrosis factor receptor associated periodic syndrome (TRAPS): clinical and laboratory findings in a series of seven patients. Rheumatology (Oxford) 42(2):235–239

    Google Scholar 

  16. Gattorno M, Pelagatti MA, Meini A et al (2008) Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 58(5):1516–1520

    Article  CAS  PubMed  Google Scholar 

  17. Farasat S, Aksentijevich I, Toro JR (2008) Autoinflammatory diseases: clinical and genetic advances. Arch Dermatol 144(3):392–402

    Article  CAS  PubMed  Google Scholar 

  18. Hoffman HM, Mueller JL, Broide DH et al (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29(3):301–305

    Article  CAS  PubMed  Google Scholar 

  19. Feldmann J, Prieur AM, Quartier P et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71(1):198–203

    Article  CAS  PubMed  Google Scholar 

  20. Aksentijevich I, Nowak M, Mallah M et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46(12):3340–3348

    Article  CAS  PubMed  Google Scholar 

  21. Ting JP, Lovering RC, Alnemri ES et al (2008) The NLR gene family: a standard nomenclature. Immunity 28(3):285–287

    Article  CAS  PubMed  Google Scholar 

  22. Aganna E, Martinon F, Hawkins PN et al (2002) Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 46(9):2445–2452

    Article  CAS  PubMed  Google Scholar 

  23. Sarrauste de Menthiere C, Terriere S, Pugnere D et al (2003) INFEVERS: the Registry for FMF and hereditary inflammatory disorders mutations. Nucleic Acids Res 31(1):282–285

    Article  CAS  Google Scholar 

  24. Agostini L, Martinon F, Burns K et al (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20(3):319–325

    Article  CAS  PubMed  Google Scholar 

  25. Touitou I, Kone-Paut I (2008) Autoinflammatory diseases. Best Pract Res Clin Rheumatol 22(5):811–829

    Article  CAS  PubMed  Google Scholar 

  26. Stych B, Dobrovolny D (2008) Familial cold auto-inflammatory syndrome (FCAS): characterization of symptomatology and impact on patients‘ lives. Curr Med Res Opin 24(6):1577–1582

    Article  PubMed  Google Scholar 

  27. Kile R, Rusk H (1940) A case of cold urticaria with an unusual family history. JAMA 114:1067–1068

    Google Scholar 

  28. Muckle TJ, Wells M (1962) Urticaria, deafness, and amyloidosis: A new heredo-familial syndrome. Q J Med 31:235–248

    CAS  PubMed  Google Scholar 

  29. Ansell MB, Bywaters EG, Elderkin FM (1975) Familial arthropathy with rash, uveitis and mental retardation. Proc R Soc Med 68(9):584–585

    CAS  PubMed  Google Scholar 

  30. Prieur AM, Griscelli C, Lampert F et al (1987) A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand J Rheumatol 66(Suppl):57–68

    Article  CAS  Google Scholar 

  31. Goldbach-Mansky R, Dailey NJ, Canna SW et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355(6):581–592

    Article  CAS  PubMed  Google Scholar 

  32. Wittkowski H, Frosch M, Wulffraat N et al (2008) S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum 58(12):3924–3931

    Article  CAS  PubMed  Google Scholar 

  33. Hoffman HM, Rosengren S, Boyle DL et al (2004) Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364(9447):1779–1785

    Article  CAS  PubMed  Google Scholar 

  34. Hawkins PN, Lachmann HJ, McDermott MF (2003) Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med 348(25):2583–2584

    Article  PubMed  Google Scholar 

  35. Santos ME, Adams JL, La Rosa FG, Lopez LR (1991) IgA Anticardiolipin Antibodies in SLE-Patients: Clinical Correlation with Thrombosis, Thrombocytopenia and Recurrent Abortion. Immunol Investig 20:583-593

    Article  Google Scholar 

  36. Jackson J, McDonald M, Casey E et al (1990) Mixed connective tissue disease with arterial thrombosis, antiphospholipid antibodies and heparin induced thrombocytopenia. J Rheumatol 17:1523–1524

    CAS  PubMed  Google Scholar 

  37. Goldbach-Mansky R, Shroff SD, Wilson M et al (2008) A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum 58(8):2432–2442

    Article  CAS  PubMed  Google Scholar 

  38. Hoffman HM, Throne ML, Amar NJ et al (2008) Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum 58(8):2443–2452

    Article  CAS  PubMed  Google Scholar 

  39. Alten R, Gram H, Joosten LA et al (2008) The human anti-IL-1 beta monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res Ther 10(3):67

    Article  CAS  Google Scholar 

  40. Lachmann H, Jung T, Felix S et al (2008a) Treatment of cryopyrin associated periodic fever syndrome with a fully human anti-IL-1 beta monoclonal antibody (ACZ885): results from a subcutanous administration study. Clin Exp Rheumatol 26(2):181

    Google Scholar 

  41. Lachmann H, Lowe P, Offer M et al (2008b) Treatment of cryopyrin associated periodic fever syndrome with a long- acting fully human anti-IL-1beta monoclonal antibody (ACZ885). Ann Rheum Dis 67(Suppl II):49

    Google Scholar 

  42. Kuemmerle-Deschner J, Tzaribachev N, Hansmann S et al (2008a) Long-lasting response to ACZ885 (a new human IgG1 IL-1b inhibiting antibody) in patients with MWS syndrome. Clin Exp Rheumatol 26(2):180

    Google Scholar 

  43. Kümmerle-Deschner J, Blank N, Roesler J et al (2008c) ACZ885 (canakinumab), a new IL-1 beta blocking monoclonal antibody provides long-lasting remission in children with cryopyrin associated fever syndrome (CAPS). Pediatr Rheumat 6(Suppl 1):26

    Article  Google Scholar 

  44. Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB et al (2009) Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 360(23):2416–2425

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Foeldvari .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foeldvari , I., Kümmerle- Deschner, J. Klinik der autoinflammatorischen Erkrankungen im Kindesalter. Z. Rheumatol. 68, 726–732 (2009). https://doi.org/10.1007/s00393-009-0487-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-009-0487-6

Schlüsselwörter

Keywords

Navigation