Skip to main content
Log in

Predicting microvascular obstruction with cardiac troponin T after acute myocardial infarction: a correlative study with contrast-enhanced magnetic resonance imaging

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

The presence of microvascular obstruction (MVO) is associated with more severely impaired left ventricular function and adverse prognosis.

The aim of this study was to evaluate whether a single cardiac troponin T-value (cTnT) was able to predict the presence of MVO and whether cTnT is an independent predictor of MVO as compared to usual risk factors.

Study design and methods

Sixty-one consecutive patients with reperfused ST-elevation myocardial infarction (STEMI) were enrolled in the study. cTnT was measured serially at admission and after 24, 48, 72 and 96 h. Contrast-enhanced cardiac magnetic resonance imaging (CE-MRI) was performed on a 1.5T MR-scanner 4 ± 1 days after STEMI.

Results

cTnT-time concentration kinetics in the presence of MVO differs from cTnT release in the absence of MVO showing a higher peak and a slower release. At single point measurement 24 h-cTnT correlates at least as well with the presence of MVO (P < 0.001) as peak cTnT (P = 0.0016) and sampling over 96 h (P < 0.001). Using ROC analysis, at single measurement a cTnT concentration >2.52 μg/l at 24 h was a predictor for MVO (AUC 0.91) with a sensitivity of 100% and a specificity of 80% with a positive predictive value of 76% and a negative predictive value of 100%. In multivariate regression analysis 24 h-cTnT remained independent predictor for MVO.

Conclusions

In STEMI, a single 24 h-cTnT value is an independent predictor for MVO and a convenient and inexpensive way to help define this important risk parameter in clinically routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beek AM, Kuhl HP, Bondarenko O, Twisk JW, Hofman MB, van Dockum WG, Visser CA, van Rossum AC (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42:895–901

    Article  PubMed  Google Scholar 

  2. Bogaert J, Kalantzi M, Rademakers FE, Dymarkowski S, Janssens S (2007) Determinants and impact of microvascular obstruction in successfully reperfused ST-segment elevation myocardial infarction. Assessment by magnetic resonance imaging. Eur Radiol 17:2572–2580

    Article  PubMed  Google Scholar 

  3. Bolognese L, Singh D (2006) Adding tirofiban to standard pretreatment does not alter outcomes for people with non ST-elevation ACS undergoing early invasive therapy. Evid Based Cardiovasc Med 10:38–40

    Article  PubMed  Google Scholar 

  4. Garot P, Pascal O, Simon M, Monin JL, Dupouy P, Elbaz N, Teiger E, Garot J, Gueret P, Dubois-Rande JL (2002) Time course and relation to local viability of microvascular function and volume after reperfused acute myocardial infarction. Am J Cardiol 89:1341–1346

    Article  PubMed  Google Scholar 

  5. Gassler JP, Topol EJ (1999) Reperfusion revisited: beyond TIMI 3 flow. Clin Cardiol 22:IV20–IV29

    Article  PubMed  CAS  Google Scholar 

  6. Giannitsis E, Steen H, Kurz K, Ivandic B, Simon AC, Futterer S, Schild C, Isfort P, Jaffe AS, Katus HA (2008) Cardiac magnetic resonance imaging study for quantification of infarct size comparing directly serial versus single time-point measurements of cardiac troponin T. J Am Coll Cardiol 51:307–314

    Article  PubMed  CAS  Google Scholar 

  7. Hombach V, Grebe O, Merkle N, Waldenmaier S, Hoher M, Kochs M, Wohrle J, Kestler HA (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 26:549–557

    Article  PubMed  Google Scholar 

  8. Ibrahim T, Bulow HP, Hackl T, Hornke M, Nekolla SG, Breuer M, Schomig A, Schwaiger M (2007) Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction. J Am Coll Cardiol 49:208–216

    Article  PubMed  Google Scholar 

  9. Ito H (2006) No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat Clin Pract Cardiovasc Med 3:499–506

    Article  PubMed  Google Scholar 

  10. Ito H, Okamura A, Iwakura K, Masuyama T, Hori M, Takiuchi S, Negoro S, Nakatsuchi Y, Taniyama Y, Higashino Y, Fujii K, Minamino T (1996) Myocardial perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation 93:1993–1999

    PubMed  CAS  Google Scholar 

  11. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    PubMed  CAS  Google Scholar 

  12. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    Article  PubMed  CAS  Google Scholar 

  13. Licka M, Zimmermann R, Zehelein J, Dengler TJ, Katus HA, Kubler W (2002) Troponin T concentrations 72 h after myocardial infarction as a serological estimate of infarct size. Heart 87:520–524

    Article  PubMed  CAS  Google Scholar 

  14. Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92:1117–1125

    PubMed  CAS  Google Scholar 

  15. Manciet LH, Poole DC, McDonagh PF, Copeland JG, Mathieu-Costello O (1994) Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomenon. Am J Physiol 266:H1541–H1550

    PubMed  CAS  Google Scholar 

  16. Metzler B, Hammerer-Lercher A, Jehle J, Dietrich H, Pachinger O, Xu Q, Mair J (2002) Plasma cardiac troponin T closely correlates with infarct size in a mouse model of acute myocardial infarction. Clin Chim Acta 325:87–90

    Article  PubMed  CAS  Google Scholar 

  17. Montalescot G, Antoniucci D, Kastrati A, Neumann FJ, Borentain M, Migliorini A, Boutron C, Collet JP, Vicaut E (2007) Abciximab in primary coronary stenting of ST-elevation myocardial infarction: a European meta-analysis on individual patients’ data with long-term follow-up. Eur Heart J 28:443–449

    Article  PubMed  CAS  Google Scholar 

  18. Rakowski T, Zalewski J, Legutko J, Bartus S, Rzeszutko L, Dziewierz A, Sorysz D, Bryniarski L, Zmudka K, Kaluza GL, Dubiel JS, Dudek D (2007) Early abciximab administration before primary percutaneous coronary intervention improves infarct-related artery patency and left ventricular function in high-risk patients with anterior wall myocardial infarction: a randomized study. Am Heart J 153:360–365

    Article  PubMed  CAS  Google Scholar 

  19. Remppis A, Ehlermann P, Giannitsis E, Greten T, Most P, Muller-Bardorff M, Katus HA (2000) Cardiac troponin T levels at 96 h reflect myocardial infarct size: a pathoanatomical study. Cardiology 93:249–253

    Article  PubMed  CAS  Google Scholar 

  20. Remppis A, Scheffold T, Greten J, Haass M, Greten T, Kubler W, Katus HA (1995) Intracellular compartmentation of troponin T: release kinetics after global ischemia and calcium paradox in the isolated perfused rat heart. J Mol Cell Cardiol 27:793–803

    Article  PubMed  CAS  Google Scholar 

  21. Skyschally A, Erbel R, Heusch G (2003) Coronary microembolization. Circ J 67:279–286

    Article  PubMed  Google Scholar 

  22. Skyschally A, Haude M, Dorge H, Thielmann M, Duschin A, van de Sand A, Konietzka I, Buchert A, Aker S, Massoudy P, Schulz R, Erbel R, Heusch G (2004) Glucocorticoid treatment prevents progressive myocardial dysfunction resulting from experimental coronary microembolization. Circulation 109:2337–2342

    Article  PubMed  CAS  Google Scholar 

  23. Steen H, Giannitsis E, Futterer S, Merten C, Juenger C, Katus HA (2006) Cardiac troponin T at 96 h after acute myocardial infarction correlates with infarct size and cardiac function. J Am Coll Cardiol 48:2192–2194

    Article  PubMed  CAS  Google Scholar 

  24. Tarantini G, Razzolini R, Cacciavillani L, Bilato C, Sarais C, Corbetti F, Marra MP, Napodano M, Ramondo A, Iliceto S (2006) Influence of transmurality, infarct size, and severe microvascular obstruction on left ventricular remodeling and function after primary coronary angioplasty. Am J Cardiol 98:1033–1040

    Article  PubMed  Google Scholar 

  25. Thygesen K, Alpert JS, White HD (2007) Universal definition of myocardial infarction. Eur Heart J 28:2525–2538

    Article  PubMed  Google Scholar 

  26. Topol EJ, Yadav JS (2000) Recognition of the importance of embolization in atherosclerotic vascular disease. Circulation 101:570–580

    PubMed  CAS  Google Scholar 

  27. Wu KC, Kim RJ, Bluemke DA, Rochitte CE, Zerhouni EA, Becker LC, Lima JA (1998) Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J Am Coll Cardiol 32:1756–1764

    Article  PubMed  CAS  Google Scholar 

  28. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JA (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765–772

    PubMed  CAS  Google Scholar 

  29. Younger JF, Plein S, Barth J, Ridgway JP, Ball SG, Greenwood JP (2007) Troponin-I concentration 72 h after myocardial infarction correlates with infarct size and presence of microvascular obstruction. Heart 93:1547–1551

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

HAK has developed the cTnT assay and holds a patent jointly with Roche Diagnostics. He has received grants and research support from several companies, and has received honoraria for lectures from Roche Diagnostics, MSD, Roche, Lilly, Novartis, BMS, Astra, and Sanofi-Aventis. ASJ is a consultant too and receives research support from Dade-Behring, Beckman–Coulter and Ortho Diagnostics. He is or has been at one time a consultant to most of the major diagnostic companies, including Roche in the past. Dr. Neizel is a research fellow funded by an internal research program of the medical faculty of the University Hospital Aachen.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirja Neizel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neizel, M., Futterer, S., Steen, H. et al. Predicting microvascular obstruction with cardiac troponin T after acute myocardial infarction: a correlative study with contrast-enhanced magnetic resonance imaging. Clin Res Cardiol 98, 555–562 (2009). https://doi.org/10.1007/s00392-009-0041-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-009-0041-1

Keywords

Navigation