Skip to main content
Log in

Heart rate reduction in cardiovascular disease and therapy

  • Review
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Heart rate influences myocardial oxygen demand, coronary blood flow, and myocardial function. Clinical and experimental studies support an association between elevated resting heart rate and a broad range of maladaptive effects on the function and structure of the cardiovascular system. Heart rate has been shown to be an important predictor of mortality in cardiovascular disorders such as coronary artery disease, myocardial infarction, and chronic heart failure. This review summarizes the specific influence of heart rate on vascular morphology and function as well as on myocardial lesions leading from early impact on vascular homeostasis to myocardial hemodynamics in chronic heart failure. Heart rate can be easily determined during physical examination of the patient and therefore allows a simple hint on prognosis and efficiency of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heusch G (2008) Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 153(8):1589–1601

    Article  CAS  PubMed  Google Scholar 

  2. Reil JC, Böhm M (2007) The role of heart rate in the development of cardiovascular disease. Clin Res Cardiol 96(9):585–592

    Article  PubMed  Google Scholar 

  3. Levy RL, White PD, Stroud WD (1945) Transient tachycardia: prognostic significance alone and in association with transient hypertension. JAMA 129:585–588

    Google Scholar 

  4. Kannel WB, Kannel C, Paffenbarger RS Jr, Cupples LA (1987) Heart rate and cardiovascular mortality: the Framingham study. Am Heart J 113(6):1489–1494

    Article  CAS  PubMed  Google Scholar 

  5. Fox K, Borer JS, Camm AJ, Danchin N, Ferrari R, Lopez Sendon JL, Steg PG, Tardif JC, Tavazzi L, Tendera M (2007) Resting heart rate in cardiovascular disease. J Am Coll Cardiol 50(9):823–830

    Article  PubMed  Google Scholar 

  6. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B, Herrmann-Lingen C, Hoes A, Humphries S, Knapton M, Perk J, Priori SG, Pyorala K, Reiner Z, Ruilope L, Sans-Menendez S, Scholte op Reimer W, Weissberg P, Wood D, Yarnell J, Zamorano JL, Walma E, Fitzgerald T, Cooney MT, Dudina A, Vahanian A, Camm J, De Caterina R, Dean V, Dickstein K, Funck-Brentano C, Filippatos G, Hellemans I, Kristensen SD, McGregor K, Sechtem U, Silber S, Tendera M, Widimsky P, Altiner A, Bonora E, Durrington PN, Fagard R, Giampaoli S, Hemingway H, Hakansson J, Kjeldsen SE, Larsen ML, Mancia G, Manolis AJ, Orth-Gomer K, Pedersen T, Rayner M, Ryden L, Sammut M, Schneiderman N, Stalenhoef AF, Tokgozoglu L, Wiklund O, Zampelas A (2007) European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Eur Heart J 28(19):2375–2414

    Article  PubMed  Google Scholar 

  7. Palatini P (2009) Elevated heart rate: a “new” cardiovascular risk factor? Prog Cardiovasc Dis 52(1):1–5

    Article  PubMed  Google Scholar 

  8. Hjalmarson A, Gilpin EA, Kjekshus J, Schieman G, Nicod P, Henning H, Ross J Jr (1990) Influence of heart rate on mortality after acute myocardial infarction. Am J Cardiol 65(9):547–553

    Article  CAS  PubMed  Google Scholar 

  9. Diaz A, Bourassa MG, Guertin MC, Tardif JC (2005) Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J 26(10):967–974

    Article  PubMed  Google Scholar 

  10. Fox K, Ford I, Steg PG, Tendera M, Robertson M, Ferrari R (2008) Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial. Lancet 372(9641):817–821

    Article  PubMed  Google Scholar 

  11. Fox K, Ford I, Steg PG, Tendera M, Ferrari R (2008) Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind placebo-controlled trial. Lancet 372(9641):807–816

    Article  CAS  PubMed  Google Scholar 

  12. Pedrinelli R, Giampietro O, Carmassi F, Melillo E, Dell’Omo G, Catapano G, Matteucci E, Talarico L, Morale M, De Negri F et al (1994) Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 344(8914):14–18

    Article  CAS  PubMed  Google Scholar 

  13. Stehouwer CD, Henry RM, Dekker JM, Nijpels G, Heine RJ, Bouter LM (2004) Microalbuminuria is associated with impaired brachial artery, flow-mediated vasodilation in elderly individuals without and with diabetes: further evidence for a link between microalbuminuria and endothelial dysfunction—the Hoorn Study. Kidney Int Suppl (92):S42–S44

  14. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A (1989) Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32(4):219–226

    Article  CAS  PubMed  Google Scholar 

  15. Böhm M, Reil JC, Danchin N, Thoenes M, Bramlage P, Volpe M (2008) Association of heart rate with microalbuminuria in cardiovascular risk patients: data from I-SEARCH. J Hypertens 26(1):18–25

    Article  PubMed  Google Scholar 

  16. Böhm M, Thoenes M, Neuberger HR, Graber S, Reil JC, Bramlage P, Volpe M (2009) Atrial fibrillation and heart rate independently correlate to microalbuminuria in hypertensive patients. Eur Heart J 30(11):1364–1371

    Article  PubMed  Google Scholar 

  17. Custodis F, Baumhakel M, Schlimmer N, List F, Gensch C, Böhm M, Laufs U (2008) Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 117(18):2377–2387

    Article  CAS  PubMed  Google Scholar 

  18. Drouin A, Gendron ME, Thorin E, Gillis MA, Mahlberg-Gaudin F, Tardif JC (2008) Chronic heart rate reduction by ivabradine prevents endothelial dysfunction in dyslipidaemic mice. Br J Pharmacol 154(4):749–757

    Article  CAS  PubMed  Google Scholar 

  19. Baumhäkel M, Custodis F, Schlimmer N, Laufs U, Böhm M (2010) Heart rate reduktion with ivabradine improves erectile dysfunction in parallel to decrease in atherosclerotic plaque load in ApoE-knockout mice. Atherosclerosis (Mar 9 Epub ahead of print)

  20. Beere PA, Glagov S, Zarins CK (1984) Retarding effect of lowered heart rate on coronary atherosclerosis. Science 226(4671):180–182

    Article  CAS  PubMed  Google Scholar 

  21. Beere PA, Glagov S, Zarins CK (1992) Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey localization, compensatory enlargement, and the sparing effect of lowered heart rate. Arterioscler Thromb 12(11):1245–1253

    CAS  PubMed  Google Scholar 

  22. Kaplan JR, Manuck SB, Clarkson TB (1987) The influence of heart rate on coronary artery atherosclerosis. J Cardiovasc Pharmacol 10(Suppl 2):S100–S102 discussion S103

    PubMed  Google Scholar 

  23. Manuck SB, Adams MR, McCaffery JM, Kaplan JR (1997) Behaviorally elicited heart rate reactivity and atherosclerosis in ovariectomized cynomolgus monkeys (Macaca fascicularis). Arterioscler Thromb Vasc Biol 17(9):1774–1779

    CAS  PubMed  Google Scholar 

  24. Korshunov VA, Berk BC (2004) Strain-dependent vascular remodeling: the “Glagov phenomenon” is genetically determined. Circulation 110(2):220–226

    Article  PubMed  Google Scholar 

  25. Perski A, Hamsten A, Lindvall K, Theorell T (1988) Heart rate correlates with severity of coronary atherosclerosis in young postinfarction patients. Am Heart J 116(5 Pt 1):1369–1373

    Article  CAS  PubMed  Google Scholar 

  26. Perski A, Olsson G, Landou C, de Faire U, Theorell T, Hamsten A (1992) Minimum heart rate and coronary atherosclerosis: independent relations to global severity and rate of progression of angiographic lesions in men with myocardial infarction at a young age. Am Heart J 123(3):609–616

    Article  CAS  PubMed  Google Scholar 

  27. Heidland UE, Strauer BE (2001) Left ventricular muscle mass and elevated heart rate are associated with coronary plaque disruption. Circulation 104(13):1477–1482

    Article  CAS  PubMed  Google Scholar 

  28. Zhu H, Friedman MH (2003) Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler Thromb Vasc Biol 23(12):2260–2265

    Article  CAS  PubMed  Google Scholar 

  29. Yang C, Tang D, Kobayashi S, Zheng J, Woodard PK, Teng Z, Bach R, Ku DN (2008) Cyclic bending contributes to high stress in a human coronary atherosclerotic plaque and rupture risk: in vitro experimental modeling and ex vivo MRI-based computational modeling approach. Mol Cell Biomech 5(4):259–274

    PubMed  Google Scholar 

  30. Katritsis DG, Pantos J, Efstathopoulos E (2007) Hemodynamic factors and atheromatic plaque rupture in the coronary arteries: from vulnerable plaque to vulnerable coronary segment. Coron Artery Dis 18(3):229–237

    Article  PubMed  Google Scholar 

  31. Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P (1996) Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture. Arterioscler Thromb Vasc Biol 16(8):1070–1073

    CAS  PubMed  Google Scholar 

  32. Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83(5):1764–1770

    CAS  PubMed  Google Scholar 

  33. Zuanetti G, Hernándes-Bernal F, Rossi A, Comerio G, Paolucci G, Maggioni AP (1999) Relevance of heart rate as a prognostic factor in myocardial infarction: the GISSI experience. Eur Heart J 1(suppl H):H52–H57

    Google Scholar 

  34. Cucherat M (2007) Quantitative relationship between resting heart rate reduction and magnitude of clinical benefits in post-myocardial infarction: a meta-regression of randomized clinicat trials. Eur Heart J 28:3012–3019

    Article  PubMed  Google Scholar 

  35. Kendall MJ, Lynch KP, Hjalmarson A, Kjekshus J (1995) Beta-blockers and sudden cardiac death. Ann Intern Med 123(5):358–367

    CAS  PubMed  Google Scholar 

  36. Hjalmarson A (1997) Effects of beta blockade on sudden cardiac death during acute myocardial infarction and the postinfarction period. Am J Cardiol 80(9B):35J–39J

    Article  CAS  PubMed  Google Scholar 

  37. Beta-blocker Heart Attack Trial Research Group (1982) A randomized trial of propranolol in patients with acute myocardial infarction mortality results. JAMA 247(12):1707–1714

    Article  Google Scholar 

  38. Danish Study Group on Verapamil in myocardial infarction (1990) Effect of verapamil on mortality and major events after acute myocardial infarction (the Danish Verapamil Infarction Trial II (DAVIT II). Am J Cardiol 66:770–785

    Google Scholar 

  39. Tardif JC, Ponikowski P, Kahan T (2009) for the ASSOCIATE study investigators. Efficacy of the I(f) current inhibitor ivabradine in patients with chronic stable angina receiving beta blocker therapy: a 4-month, randomized placebo-controlled trial. Eur Heart J 30:540–548

    Article  CAS  PubMed  Google Scholar 

  40. Koester R, Kaehler J, Ebelt H, Soeffker G, Werdan K, Meinertz T. (2010) Ivabradine in combination with beta-blocker therapy for the treatment of stable angina pectoris in every day clinical practice. Clin Res Cardiol (Epub ahead of print)

  41. Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720

    Article  PubMed  Google Scholar 

  42. Kjekshus J, Gullestad L (1999) Heart rate as therapeutic target in heart failure. Eur Heart J 1(Suppl. H):H64–H69

    Google Scholar 

  43. McAlister FA, Wiebe N, Ezekowitz JA, Leung AA, Armstrong PW (2009) Meta-analysis: beta-blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med 150:784–794

    PubMed  Google Scholar 

  44. Reil J-C, Reil G-H, Böhm M (2009) Heart rate reduction by I(f)-channel inhibition and its potential role in heart failure with reduced and preserved ejection fraction. Trends Cardiovasc Med 19:152–157

    Article  CAS  PubMed  Google Scholar 

  45. DiFrancesco D, Camm AJ (2004) Heart rate lowering by specific and selective I(f) current inhibition with ivabradine. A new therapeutic perspective in cardiovascular disease. Drugs 64:1757–1765

    Article  CAS  PubMed  Google Scholar 

  46. Lechat P, Hulot JS, Escolano S et al (2001) Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trail. Circulation 103:1428–1433

    CAS  PubMed  Google Scholar 

  47. Gullestad L, Wikstrand J, Deedwania P (2005) What resting heart rate should one aim for when treating patients with heart failure with a Beta-Blocker? J Am Coll Cardiol 45:252–259

    Article  PubMed  Google Scholar 

  48. Metra M, Torp-Pedersen C, Swedberg K et al (2005) Influence of heart rate, blood pressure, and beta-blocker dose on outcome and the difference in outcome between carvedilol and metoprolol tartrate in patients with chronic heart failure: results from the COMET trial. Eur Heart J 26:2259–2268

    Article  CAS  PubMed  Google Scholar 

  49. Swedberg K, Komajda M, Böhm M, Borer JS et al (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomized placebo-controlled study. Lancet [Epub ahead of print]

  50. Böhm M, Swedberg K, Komajda M, Borer JS et al (2010) Heart rate as a risk factor in chronic heart failur (SHIFT): the association between heart rate and outcomes in a randomized placebo-controlled trial. Lancet [Epub ahead of print]

  51. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  CAS  PubMed  Google Scholar 

  52. Kindermann M, Reil J-C, Pieske B, van Veldhusen DJ, Böhm M (2008) Heart failure with normal left ventricular ejection fraction (HFNEF). What is evidence? Trends Cardiocasc Med 18:280–292

    Article  Google Scholar 

  53. Link A, Reil JC, Selejan S, Böhm M (2009) Effect of ivabradine in dobutamine induced sinus tachycardia in a case of acute heart failure. Clin Res Cardiol 98:513–551

    Article  PubMed  Google Scholar 

  54. De Ferrari GM, Mazzuero A, Agnesina L, Bertoletti A et al (2008) Favourable effects of heart rate reduction with intravenous administration of ivabradine in patients with advanced heart failure. Eur J Heart Fail 10:550–555

    Article  PubMed  Google Scholar 

  55. Deedwania P, Carbajal E, Dietz R, Mukherjee R et al (2006) Heart rate is powerful predictor in mortality in post-AMI patients with heart failure: results from the EPHESUS trial. Eur Heart J 27:590

    Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Christian Reil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reil, JC., Custodis, F., Swedberg, K. et al. Heart rate reduction in cardiovascular disease and therapy. Clin Res Cardiol 100, 11–19 (2011). https://doi.org/10.1007/s00392-010-0207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-010-0207-x

Keywords

Navigation