Skip to main content
Log in

Association of coronary artery calcium and congestive heart failure in the general population: results of the Heinz Nixdorf Recall Study

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

The main causes of congestive heart failure (CHF) are coronary artery disease (CAD) and arterial hypertension. Coronary artery calcification (CAC) evidencing coronary atherosclerosis may occur prior to clinical CAD. The aim of our study was to assess the association between CAC as a sign of subclinical CAD and CHF in a general unselected population.

Methods

Participants of the Heinz Nixdorf Recall Study without known CAD but with known CHF as defined by a physicians’ diagnosis of CHF and dyspnea were identified. B-natriuretic peptide was measured and an exercise stress test was performed as possible. Cardiovascular risk factors and the EBCT-based CAC Agatston score were determined.

Results

Those 105/4,230 subjects (2.5%) with CHF (age 65 ± 7 years, 44% males), had higher brain natriuretic peptide (BNP) levels (median BNP 36.8 [16.5–70.1] vs. 17.6 [9.5–31.7] pg/ml, p < 0.01) and lower exercise capacity (108.7 ± 39.4 vs. 130.0 ± 40.7 W, p < 0.01) than those without. CAC in subjects with CHF was significantly higher than in those without (median CAC 64.7 [8.5–312.3] vs. 11.6 [0–109.8], p < 0.01). In univariate analysis, CAC-burden after logarithmic transformation according to log2(CAC + 1) showed a significant association with the presence of CHF (odds ratio (OR) (95% CI): 1.16 (1.1–1.23), p < 0.0001). Adjustment for age and sex (OR 1.11 (1.04–1.18), p < 0.001), additional Framingham risk score (OR 1.09 (1.02–1.16), p = 0.015), and additional cardiovascular medication (OR 1.07 (0.998–1.14), p = 0.058) attenuated this association. Age, systolic blood pressure, antihypertensive medication and increased body mass index also remained significantly associated with presence of CHF in the full multivariate model.

Conclusion

The observed association between CAC and CHF in persons without clinically overt CAD is partly determined by risk factors that are involved in the natural history of both CAC and CHF. Whether CAC has a role to identify subjects at risk of future CHF remains to be determined using follow-up analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Delagardelle C, Feiereisen P, Vaillant M et al (2008) Reverse remodelling through exercise training is more pronounced in non-ischemic heart failure. Clin Res Cardiol 97(12):865–871

    Article  PubMed  Google Scholar 

  2. McMurray JJ, Stewart S (2000) Epidemiology, aetiology, and prognosis of heart failure. Heart 83:596–602

    Article  CAS  PubMed  Google Scholar 

  3. Cowie MR, Mosterd A, Wood DA, Deckers JW et al (1997) The epidemiology of heart failure. Eur Heart J 18(2):208–225

    CAS  PubMed  Google Scholar 

  4. Manolio TA, Baughman KL, Rodeheffer R et al (1992) Prevalence and etiology of idiopathic dilated cardiomyopathy. Am J Cardiol 69:1458–1466

    Article  CAS  PubMed  Google Scholar 

  5. Rosen BD, Saad MF, Shea S et al (2006) Hypertension and smoking are associated with reduced regional left ventricular function in asymptomatic: individuals the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol 47(6):1150–1158

    Article  PubMed  Google Scholar 

  6. Schmermund A, Möhlenkamp S, Erbel R (2003) Coronary artery calcium and its relationship to coronary artery disease. Cardiol Clin 21:521–534

    Article  PubMed  Google Scholar 

  7. Möhlenkamp S, Schmermund A, Kerkhoff G et al (2003) Prognostic value of noninvasive coronary plaque burden quantification in patients with risk factors. Z Kardiol 92(5):351–361

    Article  PubMed  Google Scholar 

  8. Möhlenkamp S, Moebus S, Schmermund A et al (2007) Assessment of the natural history of coronary artery calcification and identification of its determinants Rationale of the 2nd part of the Heinz Nixdorf Recall Study. Herz 32(2):108–120

    Article  PubMed  Google Scholar 

  9. Schmermund A, Stang A, Möhlenkamp S et al (2004) Prognostic value of electron-beam computed tomography-derived coronary calcium scores compared with clinical parameters in patients evaluated for coronary artery disease. Prognostic value of EBCT in symptomatic patients. Z Kardiol 93(9):696–705

    Article  CAS  PubMed  Google Scholar 

  10. Desai MY, Nasir K, Braunstein JB et al (2004) Underlying risk factors incrementally add to the standard risk estimate in detecting subclinical atherosclerosis in low- and intermediate-risk middle-aged asymptomatic individuals. Am Heart J 148(5):871–877

    Article  PubMed  Google Scholar 

  11. Möhlenkamp S, Schmermund A, Lehmann N et al (2008) for the Heinz Nixdorf Recall Study Investigators. Subclinical coronary atherosclerosis and resting ECG abnormalities in an unselected general population. Atherosclerosis. 196(2):786–794

    Google Scholar 

  12. Schmermund A, Lehmann N, Bielak LF et al (2007) Comparison of subclinical coronary atherosclerosis and risk factors in unselected populations in Germany and US-America. Atherosclerosis 195(1):e207–e216

    Article  CAS  PubMed  Google Scholar 

  13. Schmermund A, Möhlenkamp S, Stang A et al (2002) Heinz Nixdorf Recall Study Investigative Group. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middleaged subjects: rationale and design of the Heinz Nixdorf Recall study. Am Heart J 144:212–218

    Google Scholar 

  14. Schmermund A, Möhlenkamp S, Berenbein S et al (2006) Population-based assessment of subclinical coronary atherosclerosis using electron-beam computed tomography. Atherosclerosis 185(1):177–182

    Article  CAS  PubMed  Google Scholar 

  15. Erbel R, Möhlenkamp S, Lehmann N et al (2008) on behalf of the Heinz Nixdorf Recall Study Investigative Group. Sex related cardiovascular risk stratification based on quantification of atherosclerosis and inflammation. Atherosclerosis 197(2):662–672

    Google Scholar 

  16. Michos ED, Nasir K, Braunstein JB et al (2006) Framingham risk equation underestimates subclinical atherosclerosis risk in asymptomatic women. Atherosclerosis 184(1):201–206

    Article  CAS  PubMed  Google Scholar 

  17. 12 SL ECG analysis with age & gender specific criteria. Physician’s guide. PN 416791-004 Revision A. GE Medical Systems IT, 2000

  18. Willems JL et al Assessment of the diagnostic performance of ECG computer programs and cardiologists. Common standards for electrocardiography: 10th and Final Progress Report Leuven: Ref.-Nr. CSE 90-12-31, pp 148–266

  19. Möhlenkamp S, Lehmann N, Schmermund A et al (2009) on behalf of the Heinz Nixdorf Recall Study Investigators. Association of exercise capacity and the heart rate profile during exercise stress testing with subclinical coronary atherosclerosis: data from the Heinz Nixdorf Recall Study. Clin Res Cardiol (Epub ahead of print)

  20. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  21. Meluzín J, Cerný J, Spinarová L et al (2003) Prognosis of patients with chronic coronary artery disease and severe left ventricular dysfunction. The importance of myocardial viability. Eur J Heart Fail 5(1):85–93

    Article  PubMed  Google Scholar 

  22. Budoff MJ, Shavelle DM, Lamont DH et al (1998) Usefulness of electron beam computed tomography scanning for distinguishing ischemic from nonischemic cardiomyopathy. J Am Coll Cardiol 34(2):611–612

    Google Scholar 

  23. Bild DE, Bluemke DA, Burke GL et al (2002) Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156(9):871–881

    Article  PubMed  Google Scholar 

  24. McClelland RL, Chung H, Detrano R et al (2006) Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 113(1):30–37

    Article  PubMed  Google Scholar 

  25. Bild DE, Detrano R, Peterson D et al (2005) Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 111(10):1313–1320

    Article  PubMed  Google Scholar 

  26. O’Rourke RA, Brundage BH, Froelicher VF et al (2000) American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 36:326–340

    Article  PubMed  Google Scholar 

  27. Blumenthal RS, Becker DM, Yanek LR, Moy TF et al (2006) Comparison of coronary calcium and stress myocardial perfusion imaging in apparently healthy siblings of individuals with premature coronary artery disease. Am J Cardiol 97(3):328–333

    Article  CAS  PubMed  Google Scholar 

  28. Achenbach S, Schmermund A, Erbel R et al (2003) Detection of coronary calcifications by electron beam tomography and multislice spiral CT: clinical relevance. Z Kardiol 92(11):899–907

    Article  CAS  PubMed  Google Scholar 

  29. Schmermund A, Erbel R (2001) Unstable coronary plaque and its relation to coronary calcium. Circulation 104(14):1682–1687

    Article  CAS  PubMed  Google Scholar 

  30. Rumberger JA, Sheedy PF, Breen FJ et al (1997) Electron beam CT coronary calcium score cutpoints and severity of associated angiography luminal stenosis. J Am Coll Cardiol 29:1542–1548

    Article  CAS  PubMed  Google Scholar 

  31. Raggi P, Callister TQ, Cooil B et al (2000) Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 101:850–855

    CAS  PubMed  Google Scholar 

  32. Arad Y, Spadaro LA, Goodman K et al (2000) Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 36:1253–1260

    Article  CAS  PubMed  Google Scholar 

  33. Wong ND, Hsu JC, Detrano RC et al (2000) Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 86:495–498

    Article  CAS  PubMed  Google Scholar 

  34. Erbel R, Siffert W, Möhlenkamp S et al (2003) Prävention der KHK durch Risikostratifizierung–eine neue Sichtweise mit Konsequenzen für die Gesundheitsfürsorge. Dtsch Med Wochenschr 128:330–336

    Article  CAS  PubMed  Google Scholar 

  35. Möhlenkamp S, Lehmann N, Schmermund A et al (2003) Prognostic value of extensive coronary calcium quantities in symptomatic males: a 5-year follow-up study. Eur Heart J 24(9):845–854

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the participants of the Heinz Nixdorf Recall Study and the entire community of Heinz Nixdorf Recall investigators and staff for their support and valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kälsch.

Additional information

On behalf the Investigator Group of the Heinz Nixdorf Recall Study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kälsch, H., Lehmann, N., Möhlenkamp, S. et al. Association of coronary artery calcium and congestive heart failure in the general population: results of the Heinz Nixdorf Recall Study. Clin Res Cardiol 99, 175–182 (2010). https://doi.org/10.1007/s00392-009-0104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-009-0104-3

Keywords

Navigation