Skip to main content
Log in

Allopurinol improves endothelial function and reduces oxidant-inflammatory enzyme of myeloperoxidase in metabolic syndrome

  • ORIGINAL PAPER
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

In this study, we tested in patients with metabolic syndrome whether allopurinol through decreasing oxidative stress improves endothelial function, and ameliorates inflammatory state represented by markers of myeloperoxidase, C-reactive protein (CRP) and fibrinogen.

Methods

In a randomized, double-blind fashion; subjects with metabolic syndrome were treated with allopurinol (n = 28) or placebo (n = 22) for one month. Before and after treatment, blood samples were collected and the flow-mediated dilation (FMD) and isosorbide dinitrate (ISDN)-mediated dilation of the brachial artery were performed.

Results

Baseline clinical characteristics of the allopurinol and placebo groups demonstrated no differences in terms of clinical characteristics, endothelial function and inflammatory markers. After the treatment with allopurinol, FMD was increased from 8.0 ± 0.5 % to 11.8 ± 0.6% (P < 0.01), but there were no change in the placebo group. In both groups, ISDN-mediated dilation is unaffected by the treatment. As a marker of oxidative stress, allopurinol significantly reduced malondialdehyde. Moreover, myeloperoxidase levels were reduced by the treatment with allopurinol (56.1 ± 3.4 ng/ml vs. 44.4 ± 2.4 ng/ml, P < 0.05) but there were no change in the placebo group. Surprisingly, neither CRP nor fibrinogen levels were affected by the treatment in both groups.

Conclusion

Xanthine oxidoreductase inhibition by allopurinol in patients with metabolic syndrome reduces oxidative stress, improves endothelial function, ameliorates myeloperoxidase levels and does not have any effect on CRP and fibrinogen levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baldus S, Meinertz T (2006) Current concepts of diabetic atherogenesis. Clin Res Cardiol 95(Suppl 1):i1–i6

    Article  PubMed  CAS  Google Scholar 

  2. Boudjeltia KZ, Legssyer I, Van Antwerpen P, Kisoka RL, Babar S, Moguilevsky N, Delree P, Ducobu J, Remacle C, Vanhaeverbeek M, Brohee D (2006) Triggering of inflammatory response by myeloperoxidase-oxidized LDL. Biochem Cell Biol (Biochimie et biologie cellulaire) 84:805–812

    Article  CAS  Google Scholar 

  3. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Medi 349:1595–1604

    Article  CAS  Google Scholar 

  4. Butler R, Morris AD, Belch JJ, Hill A, Struthers AD (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35:746–751

    PubMed  CAS  Google Scholar 

  5. Cardillo C, Kilcoyne CM, Cannon RO 3rd, Quyyumi AA, Panza JA (1997) Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 30:57–63

    PubMed  CAS  Google Scholar 

  6. Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94:437–444

    Article  PubMed  CAS  Google Scholar 

  7. E B (1975) Glutathione in red blood cell metabolism. A manual of biochemical methods. Grune & Stratton, New York, pp 112–114

  8. Farquharson CA, Butler R, Hill A, Belch JJ, Struthers AD (2002) Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 106:221–226

    Article  PubMed  CAS  Google Scholar 

  9. Foote CS, Goyne TE, Lehrer RI (1983) Assessment of chlorination by human neutrophils. Nature 301:715–716

    Article  PubMed  CAS  Google Scholar 

  10. Friedl HP, Smith DJ, Till GO, Thomson PD, Louis DS, Ward PA (1990) Ischemia-reperfusion in humans. Appearance of xanthine oxidase activity. Am J Pathol 136:491–495

    PubMed  CAS  Google Scholar 

  11. Fu X, Kassim SY, Parks WC, Heinecke JW (2001) Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276:41279–41287

    Article  PubMed  CAS  Google Scholar 

  12. George J, Carr E, Davies J, Belch JJ, Struthers A (2006) High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 114:2508–2516

    Article  PubMed  CAS  Google Scholar 

  13. Girotti MJ, Khan N, McLellan BA (1991) Early measurement of systemic lipid peroxidation products in the plasma of major blunt trauma patients. J Trauma 31:32–35

    Article  PubMed  CAS  Google Scholar 

  14. Godsland IF, Crook D, Proudler AJ, Stevenson JC (2005) Hemostatic risk factors and insulin sensitivity, regional body fat distribution, and the metabolic syndrome. J Clin Endocrinol Metab 90:190–197

    Article  PubMed  CAS  Google Scholar 

  15. Guthikonda S, Sinkey C, Barenz T, Haynes WG (2003) Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation 107:416–421

    Article  PubMed  CAS  Google Scholar 

  16. Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251:1371–1374

    PubMed  CAS  Google Scholar 

  17. Ishizaka N, Ishizaka Y, Toda EI, Hashimoto H, Nagai R, Yamakado M (2007) Higher serum uric acid is associated with increased arterial stiffness in Japanese individuals. Atherosclerosis 192:131–137

    Article  PubMed  CAS  Google Scholar 

  18. Jarasch ED, Grund C, Bruder G, Heid HW, Keenan TW, Franke WW (1981) Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell 25:67–82

    Article  PubMed  CAS  Google Scholar 

  19. Kahn SE, Zinman B, Haffner SM, O’Neill MC, Kravitz BG, Yu D, Freed MI, Herman WH, Holman RR, Jones NP, Lachin JM, Viberti GC (2006) Obesity is a major determinant of the association of C-reactive protein levels and the metabolic syndrome in type 2 diabetes. Diabetes 55:2357–2364

    Article  PubMed  CAS  Google Scholar 

  20. Leichman JG, Lavis VR, Aguilar D, Wilson CR, Taegtmeyer H (2006) The metabolic syndrome and the heart: a considered opinion. Clin Res Cardiol 95:i134–i141

    Article  PubMed  CAS  Google Scholar 

  21. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  PubMed  CAS  Google Scholar 

  22. Matsuura E, Kobayashi K, Tabuchi M, Lopez LR (2006) Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Prog Lipid Res 45:466–486

    Article  PubMed  CAS  Google Scholar 

  23. Milionis HJ, Kalantzi KJ, Goudevenos JA, Seferiadis K, Mikhailidis DP, Elisaf MS (2005) Serum uric acid levels and risk for acute ischaemic non-embolic stroke in elderly subjects. J Intern Medi 258:435–441

    Article  CAS  Google Scholar 

  24. Roberts CK, Won D, Pruthi S, Kurtovic S, Sindhu RK, Vaziri ND, Barnard RJ (2006) Effect of a short-term diet and exercise intervention on oxidative stress, inflammation, MMP-9, and monocyte chemotactic activity in men with metabolic syndrome factors. J Appl Physiol 100:1657–1665

    Article  PubMed  CAS  Google Scholar 

  25. Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P (2004) Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler Thromb Vascr Biol 24:1309–1314

    Article  CAS  Google Scholar 

  26. Tabuchi M, Inoue K, Usui-Kataoka H, Kobayashi K, Teramoto M, Takasugi K, Shikata K, Yamamura M, Ando K, Nishida K, Kasahara J, Kume N, Lopez LR, Mitsudo K, Nobuyoshi M, Yasuda T, Kita T, Makino H, Matsuura E (2007) The association of C-reactive protein with an oxidative metabolite of LDL and its implication in atherosclerosis. J Lipid Res 48:768–781

    Article  PubMed  CAS  Google Scholar 

  27. Tang W, Hong Y, Province MA, Rich SS, Hopkins PN, Arnett DK, Pankow JS, Miller MB, Eckfeldt JH (2006) Familial clustering for features of the metabolic syndrome: the National Heart, Lung, and Blood Institute (NHLBI) Family Heart Study. Diabetes Care 29:631–636

    Article  PubMed  Google Scholar 

  28. Tschoepe D, Roesen P, Scherbaum WA (1999) The heart and metabolic syndrome. Z Kardiol 88:215–224

    Article  PubMed  CAS  Google Scholar 

  29. Vita JA (2002) Nitric oxide-dependent vasodilation in human subjects. Meth Enzymol 359:186–200

    PubMed  CAS  Google Scholar 

  30. Vita JA, Keaney JF Jr. (2002) Endothelial function: a barometer for cardiovascular risk? Circulation 106:640–642

    Article  PubMed  Google Scholar 

  31. Vita JA, Brennan ML, Gokce N, Mann SA, Goormastic M, Shishehbor MH, Penn MS, Keaney JF Jr., Hazen SL (2004) Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation 110:1134–1139

    Article  PubMed  CAS  Google Scholar 

  32. Yamaguchi Y, Yoshikawa N, Kagota S, Nakamura K, Haginaka J, Kunitomo M (2006) Elevated circulating levels of markers of oxidative-nitrative stress and inflammation in a genetic rat model of metabolic syndrome. Nitric Oxide 15:380–386

    Article  PubMed  CAS  Google Scholar 

  33. Yoo TW, Sung KC, Shin HS, Kim BJ, Kim BS, Kang JH, Lee MH, Park JR, Kim H, Rhee EJ, Lee WY, Kim SW, Ryu SH, Keum DG (2005) Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ J 69:928–933

    Article  PubMed  CAS  Google Scholar 

  34. Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, Topol EJ, Sprecher DL, Hazen SL (2001) Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 286:2136–2142

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Yiginer MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiginer, O., Ozcelik, F., Inanc, T. et al. Allopurinol improves endothelial function and reduces oxidant-inflammatory enzyme of myeloperoxidase in metabolic syndrome. Clin Res Cardiol 97, 334–340 (2008). https://doi.org/10.1007/s00392-007-0636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-007-0636-3

Key words

Navigation