Skip to main content
Log in

Aktuelle Konzepte der diabetischen Atherogenese

Current concepts of diabetic atherogenesis

  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Summary

Morbidity and mortality in patients with diabetes is mainly driven by its vascular manifestations. The underlying pathophysiology of diabetes is centrally linked to increased generation of reactive oxygen species, namely superoxide and hydrogen peroxide. Superoxide, generated upon uncoupling of the mitochondrial respiratory chain, oxidizes endothelial-derived nitric oxide and thus impairs endothelial function. Superoxide-derived hydrogen peroxide is the principal substrate for leukocyte-derived peroxidases, in particular myeloperoxidase, which associates with endothelial cells and has been shown to catalytically oxidize nitric oxide in vivo. Superoxide also promotes synthesis of advanced glycation endproducts, which also exert potent proatherogenic properties. Moreover, superoxide and hydrogen peroxide activate the redox-sensitive transcription factors NF-κB and thus mediates expression of proinflammatory proteins like adhesion molecules. Herein some the most recent discoveries in the pathophysiology of diabetic vasculopathy are reviewed.

Zusammenfassung

Die vaskulären Manifestationen des Diabetes mellitus sind prognostisch entscheidend für dessen hohe Morbidität und Mortalität. Für die zugrunde liegende Pathophysiologie erscheint die Generation reaktiver Sauerstoffspezies, allen voran Superoxidanionen und Wasserstoffperoxid, von zentraler Bedeutung. Superoxidanionen, gebildet durch die Entkoppelung der mitochondrialen Atmungskette, oxidieren endothelial generiertes Stickstoffmonoxid und verschlechtern so die Endothelfunktion. Superoxidanionen dismutieren spontan oder katalytisch zu Wasserstoffperoxid, dem Substrat des leukozytären Hämproteins Myeloperoxidase, welches endothelial akkumuliert und NO in vivo oxidiert. Superoxidanionen fördern auch die Synthese fortgeschrittener Glykosilierungsprodukte, die ihrerseits wiederum vielseitige proatherogene Eigenschaften aufweisen. Schließlich aktivieren Superoxidanionen sowie Wasserstoffperoxid redoxsensitive Transkriptionsfaktoren wie NF-κB und regulieren so die Expression proinflammatorischer Proteine wie endothelialer Adhäsionsmoleküle. In dieser Arbeit werden einige der wichtigsten aktuellen pathophysiologischen Konzepte der diabetischen Vaskulopathie diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T, and Wilcox CS (2005) Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 67:1890–1898

    Article  CAS  PubMed  Google Scholar 

  2. Baldus S, Eiserich JP, Mani A, Castro L, Figueroa M, Chumley P, Ma W, Tousson A, White CR, Bullard DC, Brennan ML, Lusis AJ, Moore KP, Freeman BA (2001) Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest 108:1759–1770

    Article  CAS  PubMed  Google Scholar 

  3. Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Munzel T, Simoons ML, and Hamm CW (2003) Myeloperoxidase Serum Levels Predict Risk in Patients With Acute Coronary Syndromes. Circulation

  4. Baldus S, Heitzer T, Eiserich JP, Lau D, Mollnau H, Ortak M, Petri S, Goldmann B, Duchstein HJ, Berger J, Helmchen U, Freeman BA, Meinertz T, Munzel T (2004) Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion. Free Radic Biol Med 37:902–911

    Article  CAS  PubMed  Google Scholar 

  5. Barnes PJ, Adcock IM (1997) NF-kappa B: a pivotal role in asthma and a new target for therapy. Trends Pharmacol Sci 18:46–50

    CAS  PubMed  Google Scholar 

  6. Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K, Foiles PG, Freedman BI, Raskin P, Ratner RE, Spinowitz BS, Whittier FC, Wuerth JP (2004) Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol 24:32–40

    Article  CAS  PubMed  Google Scholar 

  7. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595–1604

    Article  CAS  PubMed  Google Scholar 

  8. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  9. Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, and Maseri A (2002) Widespread coronary inflammation in unstable angina. N Engl J Med 347:5–12

    Article  PubMed  Google Scholar 

  10. Centers for Disease Control and Prevention (2003) National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2002

    Google Scholar 

  11. Creager MA, Luscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108:1527–1532.

    Article  PubMed  Google Scholar 

  12. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359:995–1003

    CAS  PubMed  Google Scholar 

  13. Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A, Castro L, Lusis AJ, Nauseef WM, White CR, and Freeman BA (2002) Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296:2391–2394

    Article  CAS  PubMed  Google Scholar 

  14. Freeman DJ, Norrie J, Sattar N, Neely RD, Cobbe SM, Ford I, Isles C, Lorimer AR, Macfarlane PW, McKillop JH, Packard CJ, Shepherd J, Gaw A (2001) Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study. Circulation 103:357–362

    CAS  PubMed  Google Scholar 

  15. Lau D, Mollnau H, Eiserich JP, Freeman BA, Daiber A, Gehling UM, Brummer J, Rudolph V, Munzel T, Heitzer T, Meinertz T, Baldus S (2005) Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci USA 102:431–436

    CAS  PubMed  Google Scholar 

  16. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  CAS  PubMed  Google Scholar 

  17. Luscher TF, Creager MA, Beckman JA, Cosentino F (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part II. Circulation 108:1655–1661

    Article  PubMed  Google Scholar 

  18. Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ, Jr., Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4:1025-1031

    Article  CAS  PubMed  Google Scholar 

  19. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, Brownlee M (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101:1142–1147

    CAS  PubMed  Google Scholar 

  20. Vermes E, Ducharme A, Bourassa MG, Lessard M, White M, Tardif JC (2003) Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the Studies Of Left Ventricular Dysfunction (SOLVD). Circulation 107:1291–1296

    CAS  PubMed  Google Scholar 

  21. Vita JA, Brennan ML, Gokce N, Mann SA, Goormastic M, Shishehbor MH, Penn MS, Keaney JF, Jr., Hazen SL (2004) Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation 110:1134–1139

    CAS  PubMed  Google Scholar 

  22. Yan SF, Ramasamy R, Naka Y, Schmidt AM (2003) Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res 93:1159–1169

    Article  CAS  PubMed  Google Scholar 

  23. Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolffenbuttel BH, Zinman B (2001) Ramipril and the development of diabetes. Jama 286:1882–1885

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Baldus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldus, S., Meinertz, T. Aktuelle Konzepte der diabetischen Atherogenese. Clin Res Cardiol 95 (Suppl 1), i1–i6 (2006). https://doi.org/10.1007/s00392-006-1114-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-006-1114-z

Key words

Schlüsselwörter

Navigation