Skip to main content
Log in

Multimodal sensor-based fall detection within the domestic environment of elderly people

Multimodale sensorengestützte Sturzerkennung im häuslichen Bereich älterer Menschen

  • Beiträge zum Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Background

Falls represent a major threat to the health of the elderly and are a growing burden on the healthcare systems. With the growth of the elderly population within most societies efficient fall detection becomes increasingly important; however, existing fall detection systems still fail to produce reliable results.

Objectives

A study was carried out on sensor-based fall detection, analysis of falls with the help of fall protocols and the analysis of user acceptance of fall detection sensor technology through questionnaires.

Material and methods

A total of 28 senior citizens were recruited from a German community-dwelling population. The primary goal was a sensor-based detection of falls with accelerometers, video cameras and microphones. Details of the falls were analyzed with the help of medical geriatric assessments and standardized fall protocols. The study duration was 8 weeks and required a maximum of nine visits per subject.

Results

The study participants were 28 subjects with a mean age of 74.3 and a standard deviation (SD) of ± 6.3 years of which 12 were male and 16 female. A total of 1225.7 measurement days were recorded from all participants and the algorithms detected 2.66 falls per day. During the study period 15 falls occurred and 12 of these falls were correctly recognized by the fall detection system.

Conclusion

Current fall detection technologies work well under laboratory conditions but it is still problematic to produce reliable results when these technologies are applied to real life conditions. Acceptance towards the sensors decreased after study participation although the system was generally perceived as useful or very useful.

Zusammenfassung

Hintergrund

Stürze stellen eine erhebliche Gefahr für die Gesundheit älterer Menschen und eine Belastung für das Gesundheitssystem dar. Mit der Zunahme der älteren Bevölkerung in den meisten Gesellschaften gewinnt die Sturzerkennung an Bedeutung. Bereits existierende Sturzerkennungssysteme erzielen noch keine verlässlichen Ergebnisse.

Ziel

Sensorengestützte Sturzerkennung, Sturzanalyse mithilfe von Sturzprotokollen sowie Beurteilung der Nutzerakzeptanz hinsichtlich sensorgestützter Sturzerkennungstechnologie durch Fragebogen.

Methoden

Es wurden 28 Senioren zufällig aus einer selbstständig lebenden deutschen Population ausgewählt. Primäres Ziel war die sensorengestützte Sturzerkennung unter Zuhilfenahme von Akzelerometern, Videokameras und Mikrofonen. Details der Stürze wurden mithilfe von medizinisch-geriatrischen Assessments und standardisierten Sturzprotokollen analysiert. Die Studiendauer betrug 8 Wochen und erforderte höchstens 9 Besuche/Studienteilnehmer.

Ergebnis

An der Studie nahmen 28 Testpersonen teil [Alter: Mittelwert 74,3 Jahre, Standardabweichung (SD)  ± 6,3 Jahre, 12 männlich, 16 weiblich]. Insgesamt wurden von allen Probanden 1225,7 Messtage aufgezeichnet und 2,66 Stürze/Tag durch den Algorithmus erkannt. Während der Studie traten 15 Stürze auf; zwölf davon wurden korrekt identifiziert.

Zusammenfassung

Gegenwärtige Sturzerkennungstechnologien weisen gute Resultate unter Laborbedingungen auf, jedoch ergeben sich im Rahmen der Übertragung in reale Bedingungen noch Schwierigkeiten beim Erstellen verlässlicher Ergebnisse. Die Akzeptanz gegenüber den Sensoren ließ nach der Studienteilnahme nach, jedoch wurde das System als „nützlich“ oder „sehr nützlich“ wahrgenommen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagala F, Becker C, Cappello A et al (2012) Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS One 7(5):e37062

    Article  PubMed Central  PubMed  Google Scholar 

  2. Baldauf M (2007) A survey on context-aware systems. Int J Ad Hoc Ubiquitous Comput 2(4):263–277

    Article  Google Scholar 

  3. Berg WP, Alessio HM, Mills EM, Tong C (1997) Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 26:261–268

    Article  CAS  PubMed  Google Scholar 

  4. Bourke A, O’Brien J, Lyons G (2007) Evaluation of a threshold-based triaxial accelerometer fall detection algorithm. Gait Posture 26:194–199

    Article  CAS  PubMed  Google Scholar 

  5. Duncan PW, Weiner DK, Chandler J, Studenski S (1990) Functional reach: a new clinical measure of balance. J Gerontol 45(6):M192–M197

    Article  CAS  PubMed  Google Scholar 

  6. Folstein MF, Folstein SE, McHugh PR (1975) ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psych Res 12(3):189–198

    Article  CAS  Google Scholar 

  7. Gietzelt M, Spehr J, Ehmen Y, Wegel S, Feldwieser F, Meis M, Marschollek M, Wolf KH, Steinhagen-Thiessen E, Gövercin M (2012) GAL@Home: a feasibility study of sensor-based in-home fall detection study. Z Gerontol Geriatr 45(8):716–721

    Article  CAS  PubMed  Google Scholar 

  8. Heinbüchner B,·Hautzinger M, Becker C, Pfeiffer K (2010) Satisfaction and use of personal emergency response systems. Z Gerontol Geriat 43:219–223

    Article  Google Scholar 

  9. Hill K, Schwarz J, Flicker L, Carroll S (1999) Falls among healthy, community-dwelling, older women: a prospective study of frequency, circumstances, consequences and prediction accuracy. Aust NZ J Public Health 23(1):41–48

    Article  CAS  Google Scholar 

  10. Igual R, Medrano C, Plaza I (2013) Challenges, issues and trends in fall detection systems. Biomed Eng Online 12:66

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kurniawan S (2008) Older people and mobile phones: a multi-method investigation. Int J Hum Comput Stud 66:889–901

    Article  Google Scholar 

  12. Lamb SE, Jørstad-Stein EC, Hauer K et al (2005) Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus. J Am Geriatr Soc 53(9):1618–1622

    Article  PubMed  Google Scholar 

  13. Li Y, Ho KC, Popescu M (2012) A microphone array system for automatic fall detection. IEEE Trans Biomed Eng 59:1291–1301

    Article  PubMed  Google Scholar 

  14. Lord SR, Sherrington C, Menz HB, Close J (2007) Falls in older people: risk factors and strategies for prevention, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Mahoney FI, Barthel DW (1965) Functional evaluation: the Barthel index. Maryland State Med J 21:61–65

    Google Scholar 

  16. Masud T, Morris T (2001) Epidemiology of falls. Age Aging 30(4):3–7

    Article  Google Scholar 

  17. Mathie MJ, Coster AC, Lovell NH, Celler BG (2004) Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas 25(2):R1–R20

    Article  PubMed  Google Scholar 

  18. Mubashir M, Shao L, Seed L (2013) A survey on fall detection: principles and approaches. Neurocomputing 100:144–152

    Article  Google Scholar 

  19. Murray C, Lopez D (1996) Global and regional descriptive epidemiology of disability: incidence, prevalence. Health expectations and years lived with disability. Global Burden Dis 1:201–246

    Google Scholar 

  20. Nachreiner NM, Findorf MJ, Wyman JF, McCarthy TC, (2007) Circumstances and consequences of falls in community-dwelling older women. J Womens Health 16(10):1437–1446

    Article  Google Scholar 

  21. Oliver D, Britton M, Seed P et al (1997) Development and evaluation of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: case-control and cohort studies. BMJ 315(7115):1049–1053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pierobon A, Funk M (2004) Sturzprävention bei älteren Menschen, 1st edn. Thieme, Stuttgart

    Google Scholar 

  23. Podsiadlo D, Richardson S (1991) The timed ‘Up & Go’: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(6):142–148

    CAS  PubMed  Google Scholar 

  24. Schwickert L, Becker C, Lindemann U, Maréchal C, Bourke A, Chiari L, Helbostad JL, Zijlstra·W, Aminian K, Todd C, Bandinelli S, Klenk J (2013) Fall detection with body-worn sensors: a systematic review. Z Gerontol Geriatr 46:706–719. doi:10.1007/s00391-013-0559-8

    Article  CAS  PubMed  Google Scholar 

  25. Tinetti ME (1986) Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34:119–126

    CAS  PubMed  Google Scholar 

  26. Zecevic A, Chesworth B, Zaric G, Huang Q, Salmon A, McAuslan D, Welch R, Brunton D (2012) Estimating the cost of serious injurious falls in a Canadian acute care hospital. Can J Aging 31(2):139–147

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Acknowledgement

The Lower Saxony research network “Design of Environments for Ageing” acknowledges the support of the Lower Saxony Ministry of Science and Culture through the “Niedersächsisches Vorab” grant program (grant ZN 2701).

Conflicts of interests

F. Feldwieser, M. Gietzelt, M. Goevercin, M. Marschollek, M. Meis, S. Winkelbach, K.H. Wolf, J. Spehr and E. Steinhagen-Thiessen state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Feldwieser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldwieser, F., Gietzelt, M., Goevercin, M. et al. Multimodal sensor-based fall detection within the domestic environment of elderly people. Z Gerontol Geriat 47, 661–665 (2014). https://doi.org/10.1007/s00391-014-0805-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-014-0805-8

Keywords

Schlüsselwörter

Navigation