Skip to main content

Advertisement

Log in

The microenvironment in the Hirschsprung's disease gut supports myenteric plexus growth

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Introduction

The transplantation of neural crest derived stem cells (NCSC) is a potent alternative for the treatment of Hirschsprung's disease (HSCR). Cells to be transplanted should find an appropriate microenvironment to survive and differentiate. Influences of HSCR-smooth-muscle-protein extracts upon isolated myenteric plexus cells, dissociated dorsal root ganglia and NCSC were studied in vitro to investigate the quality of this microenvironment effects.

Methods

Postnatal human gut from children undergoing colonic resection due to HSCR was divided in segments. Smooth muscle was dissected and homogenized. Glial-cell-line-derived-neurotrophic-factor (GDNF) and transforming-growth-factor-β-1 (TGFβ-1) concentration were measured in the homogenates from the individual segment using ELISA. Myenteric plexus and dissociated dorsal root ganglia (DRG) cultures, as well as NCSCs were exposed to protein extracts derived from ganglionic and aganglionic HSCR segments, and their effect upon neurite outgrowth, survival, and branching was evaluated.

Results and conclusions

The amount of the factors varied considerably between the individual segments and also from patient to patient. Four major expression patterns could be detected. While all extracts tested lead to a significant increase in neurite outgrowth compared to the control, extracts from proximal segments tended to have more prominent effects. In one experiment, extracts from all individual segments of a single patient were tested. Neurite outgrowth, neuronal survival, and branching pattern varied from segment to segment, but all HSCR-muscle-protein extracts increased neuronal survival and network formation. Smooth muscle protein from aganglionic bowel supports the survival and outgrowth of myenteric neurons and NCSCs and is so an appropriate target for neural stem cell treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsuji H, Spitz L, Kiely EM, Drake DP, Pierro A (1999) Management and long-term follow-up of infants with total colonic aganglionosis. J Pediatr Surg 34:158–161, discussion 62

    Article  PubMed  CAS  Google Scholar 

  2. Amiel J, Lyonnet S (2001) Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet 38:729–739

    Article  PubMed  CAS  Google Scholar 

  3. Milla PJ (2005) Distal motility disorders. J Pediatr Gastroenterol Nutr 41(Suppl 1):S20

    PubMed  Google Scholar 

  4. Burzynski G, Shepherd IT, Enomoto H (2009) Genetic model system studies of the development of the enteric nervous system, gut motility and Hirschsprung's disease. Neurogastroent Motil 21:113–127

    Article  CAS  Google Scholar 

  5. Fitze G, Cramer J, Ziegler A, Schierz M, Schreiber M, Kuhlisch E et al (2002) Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung's disease. Lancet 359:1200–1205

    Article  PubMed  CAS  Google Scholar 

  6. Bolk S, Pelet A, Hofstra RM, Angrist M, Salomon R, Croaker D et al (2000) A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc Natl Acad Sci USA 97:268–273

    Article  PubMed  CAS  Google Scholar 

  7. Doray B, Salomon R, Amiel J, Pelet A, Touraine R, Billaud M et al (1998) Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet 7:1449–1452

    Article  PubMed  CAS  Google Scholar 

  8. Puffenberger EG, Hosoda K, Washington SS, Nakao K, deWit D, Yanagisawa M et al (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell 79:1257–1266

    Article  PubMed  CAS  Google Scholar 

  9. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A et al (1998) SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat Genet 18:171–173

    Article  PubMed  CAS  Google Scholar 

  10. Barlow A, de Graaff E, Pachnis V (2003) Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 40:905–916

    Article  PubMed  CAS  Google Scholar 

  11. Martucciello G (2008) Hirschsprung's disease, one of the most difficult diagnoses in pediatric surgery: a review of the problems from clinical practice to the bench. Eur J Pediatr Surg 18:140–149

    Article  PubMed  CAS  Google Scholar 

  12. Catto-Smith AG, Trajanovska M, Taylor RG (2007) Long-term continence after surgery for Hirschsprung's disease. J Gastroenterol Hepatol 22:2273–2282

    Article  PubMed  Google Scholar 

  13. Martucciello G, Pini Prato A, Puri P, Holschneider AM, Meier-Ruge W, Jasonni V et al (2005) Controversies concerning diagnostic guidelines for anomalies of the enteric nervous system: a report from the fourth International Symposium on Hirschsprung's disease and related neurocristopathies. J Pediatr Surg 40:1527–1531

    Article  PubMed  Google Scholar 

  14. Sandgren K, Larsson LT, Ekblad E (2002) Widespread changes in neurotransmitter expression and number of enteric neurons and interstitial cells of Cajal in lethal spotted mice: an explanation for persisting dysmotility after operation for Hirschsprung's disease? Dig Dis Sci 47:1049–1064

    Article  PubMed  CAS  Google Scholar 

  15. Sandgren K, Ekblad E, Larsson LT (2000) Survival of neurons and interstitial cells of Cajal after autotransplantation of myenteric ganglia from small intestine in the lethal spotted mouse. Pediatr Surg Int 16:272–276

    Article  PubMed  CAS  Google Scholar 

  16. Schafer KH, Mestres P (2000) Reaggregation of rat dissociated myenteric plexus in extracellular matrix gels. Dig Dis Sci 45:1631–1638

    Article  PubMed  CAS  Google Scholar 

  17. Schafer KH, Van Ginneken C, Copray S (2009) Plasticity and neural stem cells in the enteric nervous system. Anat Rec (Hoboken) 292:1940–1952

    Article  Google Scholar 

  18. Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N (2009) Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 136:2214–2225, e1-3

    Article  PubMed  CAS  Google Scholar 

  19. Rauch U, Hansgen A, Hagl C, Holland-Cunz S, Schafer KH (2006) Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int J Colorectal Dis 21:554–559

    Article  PubMed  Google Scholar 

  20. Sidebotham EL, Kenny SE, Lloyd DA, Vaillant CR, Edgar DH (2002) Location of stem cells for the enteric nervous system. Pediatr Surg Int 18:581–585

    Article  PubMed  CAS  Google Scholar 

  21. Sidebotham EL, Woodward MN, Kenny SE, Lloyd DA, Vaillant CR, Edgar DH (2002) Localization and endothelin-3 dependence of stem cells of the enteric nervous system in the embryonic colon. J Pediatr Surg 37:145–150

    Article  PubMed  Google Scholar 

  22. Bondurand N, Natarajan D, Thapar N, Atkins C, Pachnis V (2003) Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development 130:6387–6400

    Article  PubMed  CAS  Google Scholar 

  23. Schafer KH, Hagl CI, Rauch U (2003) Differentiation of neurospheres from the enteric nervous system. Pediatr Surg Int 19:340–344

    Article  PubMed  Google Scholar 

  24. Parikh DH, Tam PK, Van Velzen D, Edgar D (1992) Abnormalities in the distribution of laminin and collagen type IV in Hirschsprung's disease. Gastroenterology 102:1236–1241

    PubMed  CAS  Google Scholar 

  25. Parikh DH, Tam PK, Van Velzen D, Edgar D (1994) The extracellular matrix components, tenascin and fibronectin, in Hirschsprung's disease: an immunohistochemical study. J Pediatr Surg 29:1302–1306

    Article  PubMed  CAS  Google Scholar 

  26. Wedel T, Holschneider AM, Krammer HJ (1999) Ultrastructural features of nerve fascicles and basal lamina abnormalities in Hirschsprung's disease. Eur J Pediatr Surg 9:75–82

    Article  PubMed  CAS  Google Scholar 

  27. Camilleri M (2001) Enteric nervous system disorders: genetic and molecular insights for the neurogastroenterologist. Neurogastroenterol Motil 13:277–295

    PubMed  CAS  Google Scholar 

  28. Heanue TA, Pachnis V (2006) Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. Proc Natl Acad Sci USA 103:6919–6924

    Article  PubMed  CAS  Google Scholar 

  29. Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung's disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8:466–479

    Article  PubMed  CAS  Google Scholar 

  30. Paran TS, Rolle U, Puri P (2006) Enteric nervous system and developmental abnormalities in childhood. Pediatr Surg Int 22:945–959

    Article  PubMed  Google Scholar 

  31. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Article  PubMed  CAS  Google Scholar 

  32. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  PubMed  CAS  Google Scholar 

  33. Ohshiro K, Puri P (1998) Reduced glial cell line-derived neurotrophic factor level in aganglionic bowel in Hirschsprung's disease. J Pediatr Surg 33:904–908

    Article  PubMed  CAS  Google Scholar 

  34. Bar KJ, Facer P, Williams NS, Tam PK, Anand P (1997) Glial-derived neurotrophic factor in human adult and fetal intestine and in Hirschsprung's disease. Gastroenterology 112:1381–1385

    Article  PubMed  CAS  Google Scholar 

  35. Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I et al (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature 367:377–378

    Article  PubMed  CAS  Google Scholar 

  36. Lantieri F, Griseri P, Puppo F, Campus R, Martucciello G, Ravazzolo R et al (2006) Haplotypes of the human RET proto-oncogene associated with Hirschsprung disease in the Italian population derive from a single ancestral combination of alleles. Ann Hum Genet 70:12–26

    Article  PubMed  CAS  Google Scholar 

  37. Lyonnet S, Bolino A, Pelet A, Abel L, Nihoul-Fekete C, Briard ML et al (1993) A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet 4:346–350

    Article  PubMed  CAS  Google Scholar 

  38. Martucciello G, Ceccherini I, Lerone M, Jasonni V (2000) Pathogenesis of Hirschsprung's disease. J Pediatr Surg 35:1017–1025

    Article  PubMed  CAS  Google Scholar 

  39. Berrebi D, Fouquet V, de Lagausie P, Carricaburu E, Ferkdadji L, Chomette P et al (2007) Duhamel operation vs neonatal transanal endorectal pull-through procedure for Hirschsprung disease: which are the changes for pathologists? J Pediatr Surg 42:688–691

    Article  PubMed  Google Scholar 

  40. Tesseur I, Zou K, Berber E, Zhang H, Wyss-Coray T (2006) Highly sensitive and specific bioassay for measuring bioactive TGF-beta. BMC Cell Biol 7:15

    Article  PubMed  Google Scholar 

  41. Kramer F, Stover T, Warnecke A, Diensthuber M, Lenarz T, Wissel K (2010) BDNF mRNA expression is significantly upregulated in vestibular schwannomas and correlates with proliferative activity. J Neurooncol 98:31–39

    Article  PubMed  CAS  Google Scholar 

  42. Wang L, Wang ZH, Shen CY, You ML, Xiao JF, Chen GQ (2010) Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31:1691–1698

    Article  PubMed  CAS  Google Scholar 

  43. Schafer KH, Saffrey MJ, Burnstock G, Mestres-Ventura P (1997) A new method for the isolation of myenteric plexus from the newborn rat gastrointestinal tract. Brain Res Brain Res Protoc 1:109–113

    Article  PubMed  CAS  Google Scholar 

  44. Ceyhan GO, Demir IE, Altintas B, Rauch U, Thiel G, Muller MW et al (2008) Neural invasion in pancreatic cancer: a mutual tropism between neurons and cancer cells. Biochem Biophys Res Commun 374:442–447

    Article  PubMed  CAS  Google Scholar 

  45. Barlow AJ, Wallace AS, Thapar N, Burns AJ (2008) Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation. Development 135:1681–1691

    Article  PubMed  CAS  Google Scholar 

  46. Furness J (2006) The Enteric Nervous System. Blackwell, Oxford

    Google Scholar 

  47. Brooks AS, Oostra BA, Hofstra RM (2005) Studying the genetics of Hirschsprung's disease: unraveling an oligogenic disorder. Clin Genet 67:6–14

    Article  PubMed  CAS  Google Scholar 

  48. Emison ES, Garcia-Barcelo M, Grice EA, Lantieri F, Amiel J, Burzynski G et al (2010) Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet 87:60–74

    Article  PubMed  CAS  Google Scholar 

  49. Vieten D, Spicer R (1998) Enterocolitis complicating Hirschsprung's disease. Semin Pediatr Surg 13:263–272

    Article  Google Scholar 

  50. Menezes M, Puri P (2006) Long-term outcome of patients with enterocolitis complicating Hirschsprung's disease. Pediatr Surg Int 22:316–318

    Article  PubMed  Google Scholar 

  51. Schafer KH, Micci MA, Pasricha PJ (2009) Neural stem cell transplantation in the enteric nervous system: roadmaps and roadblocks. Neurogastroenterol Motil 21:103–112

    Article  PubMed  Google Scholar 

  52. Hotta R, Natarajan D, Thapar N (2009) Potential of cell therapy to treat pediatric motility disorders. Semin Pediatr Surg 18:263–273

    Article  PubMed  Google Scholar 

  53. Natarajan D, Grigoriou M, Marcos-Gutierrez CV, Atkins C, Pachnis V (1999) Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development 126:157–168

    PubMed  CAS  Google Scholar 

  54. Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35:657–669

    Article  PubMed  CAS  Google Scholar 

  55. Micci MA, Pasricha PJ (2007) Neural stem cells for the treatment of disorders of the enteric nervous system: strategies and challenges. Dev Dyn 236:33–43

    Article  PubMed  CAS  Google Scholar 

  56. Thapar N (2007) Future horizons in the treatment of enteric neuropathies. J Pediatr Gastroenterol Nutr 45(Suppl 2):S110–S114

    Article  PubMed  Google Scholar 

  57. Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ (2003) Hirschsprung disease is linked to defects in neural crest stem cell function. Science 301:972–976

    Article  PubMed  CAS  Google Scholar 

  58. Silva AT, Wardhaugh T, Dolatshad NF, Jones S, Saffrey MJ (2008) Neural progenitors from isolated postnatal rat myenteric ganglia: expansion as neurospheres and differentiation in vitro. Brain Res 1218:47–53

    Article  PubMed  CAS  Google Scholar 

  59. Parikh DH, Tam PK, Lloyd DA, Van Velzen D, Edgar DH (1992) Quantitative and qualitative analysis of the extracellular matrix protein, laminin, in Hirschsprung's disease. J Pediatr Surg 27:991–995, discussion 5–6

    Article  PubMed  CAS  Google Scholar 

  60. Rauch U, Schafer KH (2003) The extracellular matrix and its role in cell migration and development of the enteric nervous system. Eur J Pediatr Surg 13:158–162

    Article  PubMed  CAS  Google Scholar 

  61. Rothman TP, Goldowitz D, Gershon MD (1993) Inhibition of migration of neural crest-derived cells by the abnormal mesenchyme of the presumptive aganglionic bowel of ls/ls mice: analysis with aggregation and interspecies chimeras. Dev Biol 159:559–573

    Article  PubMed  CAS  Google Scholar 

  62. Jacobs-Cohen RJ, Payette RF, Gershon MD, Rothman TP (1987) Inability of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice: requirement for a permissive microenvironment. J Comp Neurol 255:425–438

    Article  PubMed  CAS  Google Scholar 

  63. Lui VC, Samy ET, Sham MH, Mulligan LM, Tam PK (2002) Glial cell line-derived neurotrophic factor family receptors are abnormally expressed in aganglionic bowel of a subpopulation of patients with Hirschsprung's disease. Lab Invest 82:703–712

    PubMed  CAS  Google Scholar 

  64. Rodrigues DM, Li AY, Nair DG (2010) Blennerhassett MG. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system, Neurogastroenterol Motil

    Google Scholar 

  65. Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF (2001) GDNF is a chemoattractant for enteric neural cells. Dev Biol 229:503–516

    Article  PubMed  CAS  Google Scholar 

  66. Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K et al (1998) Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 18:9822–9834

    PubMed  CAS  Google Scholar 

  67. Peterziel H, Paech T, Strelau J, Unsicker K, Krieglstein K (2007) Specificity in the crosstalk of TGF beta/GDNF family members is determined by distinct GFR alpha receptors. J Neurochem 103:2491–2504

    Article  PubMed  CAS  Google Scholar 

  68. Schober A, Hertel R, Arumae U, Farkas L, Jaszai J, Krieglstein K et al (1999) Glial cell line-derived neurotrophic factor rescues target-deprived sympathetic spinal cord neurons but requires transforming growth factor-beta as cofactor in vivo. J Neurosci 19:2008–2015

    PubMed  CAS  Google Scholar 

  69. Thapar N (2009) New frontiers in the treatment of Hirschsprung disease. J Pediatr Gastroenterol Nutr 48(Suppl 2):S92–S94

    Article  PubMed  Google Scholar 

  70. Martucciello G, Brizzolara A, Favre A, Lombardi L, Bocciardi R, Sanguineti M et al (2007) Neural crest neuroblasts can colonise aganglionic and ganglionic gut in vivo. Eur J Pediatr Surg 17:34–40

    Article  PubMed  CAS  Google Scholar 

  71. Lindley RM, Hawcutt DB, Connell MG, Almond SL, Vannucchi MG, Faussone-Pellegrini MS et al (2008) Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology 135:205–216, e6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Elvira Wink and Karin Kaiser for excellent technical support. The work was supported by the German Research Foundation (DFG SCHA 878-1 and 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Herbert Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagl, C.I., Rauch, U., Klotz, M. et al. The microenvironment in the Hirschsprung's disease gut supports myenteric plexus growth. Int J Colorectal Dis 27, 817–829 (2012). https://doi.org/10.1007/s00384-012-1411-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-012-1411-0

Keywords

Navigation