Skip to main content

Advertisement

Log in

Reprimo 824 G>C and p53R2 4696 C>G single nucleotide polymorphisms and colorectal cancer: a case–control disease association study

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background

Improved survival from colorectal cancer (CRC) may result from screening for inherited genetic risk factors. Reprimo and p53R2 are p53-inducible genes involved in cell cycle surveillance and DNA repair. Single nucleotide polymorphisms (SNPs) of these genes have been discovered, but their effects on the genes' function and association with CRC is not known.

Methods

Ninety healthy controls, 52 diverticular disease controls and 96 CRC cases were genotyped. DNA was extracted from buccal brush biopsies. Genotyping was performed by polymerase chain reaction (PCR) or polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) methods. Tests for Hardy–Weinberg equilibrium and allelic- and genotype-disease association were performed online using the Finetti program.

Results

All three populations were in Hardy–Weinberg equilibrium with respect to p53R2 4696C>G SNP, and no CRC associations were demonstrated with this SNP. The healthy and CRC populations were in Hardy–Weinberg equilibrium with respect to the Reprimo 824G>C SNP, but the diverticular disease population was not (P = 0.03). No CRC were demonstrated with Reprimo 824G>C.

Conclusion

No association between p53R2 4696C>G and Reprimo 824G>C with CRC was shown by this study. An association between the Reprimo 824G>C heterozygote and diverticular disease may exist on the basis of deviation from Hardy–Weinberg equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boyle P, Langman JS (2000) ABC of colorectal cancer: epidemiology. BMJ 321(7264):805–808

    Article  PubMed  CAS  Google Scholar 

  2. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  PubMed  CAS  Google Scholar 

  3. Leslie A, Carey FA, Pratt NR, Steele RJ (2002) The colorectal adenoma–carcinoma sequence. Br J Surg 89(7):845–860

    Article  PubMed  CAS  Google Scholar 

  4. Terdiman JP (2000) Genomic events in the adenoma to carcinoma sequence. Semin Gastrointest Dis 11(4):194–206

    PubMed  CAS  Google Scholar 

  5. Fukushima T, Takenoshita S (2001) Colorectal carcinogenesis. Fukushima J Med Sci 47(1):1–11

    PubMed  CAS  Google Scholar 

  6. Yang VW (1999) The molecular genetics of colorectal cancer. Curr Gastroenterol Rep 1(5):449–454

    Article  PubMed  CAS  Google Scholar 

  7. Houlston RS, Tomlinson IP (2001) Polymorphisms and colorectal tumor risk. Gastroenterology 121(2):282–301

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K et al (2000) A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404(6773):42–49

    Article  PubMed  CAS  Google Scholar 

  9. Nakano K, Balint E, Ashcroft M, Vousden KH (2000) A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 19(37):4283–4289

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi T, Matsuda K, Sagiya Y, Iwadate M, Fujino MA, Nakamura Y et al (2001) p53R2-dependent pathway for DNA synthesis in a p53-regulated cell cycle checkpoint. Cancer Res 61(22):8256–8262

    PubMed  CAS  Google Scholar 

  11. Zhou B, Liu X, Mo X, Xue L, Darwish D, Qiu W et al (2003) The human ribonucleotide reductase subunit hRRM2 complements p53R2 in response to UV-induced DNA repair in cells with mutant p53. Cancer Res 63(20):6583–6594

    PubMed  CAS  Google Scholar 

  12. Yanamoto S, Kawasaki G, Yoshitomi I, Mizuno A (2003) Expression of p53R2, newly p53 target in oral normal epithelium, epithelial dysplasia and squamous cell carcinoma. Cancer Lett 190(2):233–243

    Article  PubMed  CAS  Google Scholar 

  13. Ye Z, Parry JM (2002) The discovery and confirmation of single nucleotide polymorphisms in the human p53R2 gene by EST database analysis. Mutagenesis 17(5):361–364

    Article  PubMed  CAS  Google Scholar 

  14. Smeds J, Kumar R, Hemminki K (2001) Polymorphic insertion of additional repeat within an area of direct 8 bp tandem repeats in the 5′-untranslated region of the p53R2 gene and cancer risk. Mutagenesis 16(6):547–550

    Article  PubMed  CAS  Google Scholar 

  15. Ohki R, Nemoto J, Murasawa H, Oda E, Inazawa J, Tanaka N et al (2000) Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J Biol Chem 275(30):22627–22630

    Article  PubMed  CAS  Google Scholar 

  16. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20(15):1803–1815

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Z, Li J, Lantry LE, Wang Y, Wiseman RW, Lubet RA et al (2002) p53 transgenic mice are highly susceptible to 1, 2-dimethylhydrazine-induced uterine sarcomas. Cancer Res 62(11):3024–3029

    PubMed  CAS  Google Scholar 

  18. Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL et al (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63(13):3735–3742

    PubMed  CAS  Google Scholar 

  19. Ye Z, Parry JM (2002) Identification of polymorphisms in the human Reprimo gene using public EST data. Teratog Carcinog Mutagen 22(6):485–493

    Article  PubMed  CAS  Google Scholar 

  20. de Jong MM, Nolte IM, te Meerman GJ, van der Graaf WT, de Vries EG, Sijmons RH et al (2002) Low-penetrance genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev 11(11):1332–1352

    PubMed  Google Scholar 

  21. Mort R, Mo L, McEwan C, Melton DW (2003) Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer. Br J Cancer 89(2):333–337

    Article  PubMed  CAS  Google Scholar 

  22. de Finetti Programme. [cited; Available from: http://ihg.gsf.de/cgi-bin/hw/hwal.pl

  23. Genestat Statistical Genetics web site. [cited; Available from: http://www.meb.ki.se/genestat/genestat.htm

  24. Connor JM, Ferguson-Smith MA (1993) Chapter 11. In: Essential medical genetics. 4th ed, Blackwell, Oxford

  25. Silverman EK, Palmer LJ (2000) Case–control association studies for the genetics of complex respiratory diseases. Am J Respir Cell Mol Biol 22:645–648

    PubMed  CAS  Google Scholar 

  26. Clayton D (2001) Population association. In: Balding D, Bishop M, Cannings C (eds) Handbook of statistical genetics, chapter 19. Wiley, Chichester, pp 519–40

    Google Scholar 

  27. Richmond RC, Powell JR (1970) Evidence of heterosis associated with an enzyme locus in a natural population of Drosophila. Proc Natl Acad Sci U S A 67(3):1264–1267

    Article  PubMed  CAS  Google Scholar 

  28. Nakaji S, Danjo K, Munakata A, Sugawara K, MacAuley D, Kernohan G et al (2002) Comparison of etiology of right-sided diverticula in Japan with that of left-sided diverticula in the West. Int J Colorectal Dis 17(6):365–373

    Article  PubMed  Google Scholar 

  29. Eliashar R, Sichel JY, Biron A, Dano I (1998) Multiple gastrointestinal complications in Marfan syndrome. Postgrad Med J 74(874):495–497

    Article  PubMed  CAS  Google Scholar 

  30. Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ (1997) Ehlers–Danlos syndromes: revised nosology, Villefranche, Ehlers–Danlos National Foundation (USA) and Ehlers–Danlos Support Group (UK). Am J Med Genet 77(1):31–37

    Article  Google Scholar 

  31. Ludeman L, Warren BF, Shepherd NA (2002) The pathology of diverticular disease. Best Pract Res Clin Gastroenterol 16(4):543–562

    Article  PubMed  Google Scholar 

  32. Mimura T, Emanuel A, Kamm MA (2002) Pathophysiology of diverticular disease. Best Pract Res Clin Gastroenterol 16(4):563–576

    Article  PubMed  Google Scholar 

  33. Price SJ, Greaves DR, Watkins H (2001) Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem 276(10):7549–7558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. David Skibinski for statistical advice and Dianne Elwell for technical assistance.

Competing interests

The authors declare that there are no competing interests.

Authors' contributions

WB, JB, GJ and JP conceived and designed the study and collected tissue samples. WB performed DNA extraction, genotyping, statistical analysis and drafted the manuscript. GJ and JP helped draft the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Beasley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beasley, W.D., Beynon, J., Jenkins, G.J.S. et al. Reprimo 824 G>C and p53R2 4696 C>G single nucleotide polymorphisms and colorectal cancer: a case–control disease association study. Int J Colorectal Dis 23, 375–381 (2008). https://doi.org/10.1007/s00384-007-0435-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-007-0435-3

Keywords

Navigation