Skip to main content

Advertisement

Log in

Lack of thrombospondin-1 increases angiogenesis in a model of chronic inflammatory bowel disease

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background and aims

Vascular abnormalities and expression of pro-angiogenic factors are observed in inflammatory bowel diseases (IBD). In this study, the role of thrombospondin-1 (TSP-1), an antiangiogenic protein, was analyzed using the dextran sulfate sodium (DSS) model for IBD.

Materials and methods

Wild-type (WT) and thrombospondin-1-deficient (TSP-1-/-) mice were subjected to four cycles (7 days) of DSS. Basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), transforming growth factor beta 1 (TGFß-1), and pro-apoptotic proteins such as Fas and its ligand (FasL) were determined by enzyme-linked immunosorbent assay. Double immunohistochemistry for cluster of differential 31 (CD31) and panendothelial cell antigen-32 antibodies was performed for detecting blood vessels. The terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay was also performed for identifying apoptotic cells. Inflammation, dysplasia, microvascular density (MVD), apoptotic indices (AI), protein 53 (p53), and ß-catenin expression were determined.

Results

VEGF and bFGF protein levels and MVD were higher in the TSP-1-/- mice (p = 0.0312, p = 0.0246, and p = 0.0085, respectively). AI in the endothelial cells (EC) and FasL levels were significantly lower in TSP-1-/- compared to WT mice (p = 0.0042 and p = 0.0362, respectively). Dysplasia was detected in 66% of TSP-1-/- mice compared to 14% in WT mice. Hscores of ß-catenin and areas overexpressing p53 were higher in TSP-1-/- mice (p = 0.0002 and p = 0.0339, respectively).

Conclusion

TSP-1 may decrease angiogenesis by reducing the levels of pro-angiogenic factors and inducing apoptosis in EC through the Fas or FasL pathway. These findings, along with the increased overexpression of p53 and ß-catenin in TSP-1-/- mice, underline its role in carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285

    Article  PubMed  CAS  Google Scholar 

  2. Seril DN, Liao J, Yang GY, Yang CS (2003) Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis 24(3):353–362

    Article  PubMed  Google Scholar 

  3. Russel MGVM, Stockbrügger RW (1996) Epidemiology of inflammatory bowel disease: an update. Scand J Gastroenterol 31:417–427

    Article  PubMed  CAS  Google Scholar 

  4. Di Sabatino, Armellini E, Morera R, Ricevuti L, Cazzola P, Fulle I, Corazza GR (2004) Serum bFGF and VEGF correlate respectively with bowel wall thickness and intramural blood flow in Crohn’s disease. Inflamm Bowel Dis 10(5):573–577

    Article  PubMed  Google Scholar 

  5. Giatromanolaki, Maltezos E, Papazoglou D, Simopoulos C, Gatter KC, Harris AL, Koukourakis MI (2003) Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J Clin Pathol 56(3):209–213

    Article  PubMed  CAS  Google Scholar 

  6. Goebel, Davis WC, Jennings M, Siahaan TJ, Alexander JS, Kevil CG (2006) VEGF-A stimulation of leukocyte adhesion to colonic microvascular endothelium: implications for inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 290(4):G648–G654

    Article  PubMed  CAS  Google Scholar 

  7. Lawler, Urry L, McHenry K, Smith TF (1993) The evolution of the thrombospondin gene family. J Mol Evol 36(6):509–516

    Article  PubMed  CAS  Google Scholar 

  8. Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36(3):961–968

    Article  PubMed  CAS  Google Scholar 

  9. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Arispe ML (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA 98(22):12485–12490

    Article  PubMed  CAS  Google Scholar 

  10. Jimenez B, Volpert O, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signal leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48

    Article  PubMed  CAS  Google Scholar 

  11. Saumet A, Slimane MB, Lanotte M, Lawler J, Dubernard V (2005) Type 3-repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/α vs β3 in promyelocytic leukemia NB4 cells. Blood 106(2):658–667

    Article  PubMed  CAS  Google Scholar 

  12. Lamy, Brown EJ, Bornstein P, Ticchioni M, Bernard A (2007) Interactions between CD47 and thrombospondin reduce inflammation. J Immunol 178(9):5930–5939

    PubMed  CAS  Google Scholar 

  13. Ren B, Yee KO, Lawler J, Khosravi-Far R (2006) Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta 1765(2):178–188

    PubMed  Google Scholar 

  14. Gutierrez LS, Suckow M, Lawler J, Ploplis VA, Castellino FJ (2003) Thrombospondin-1 a regulator of adenoma growth an carcinoma progression in the ApcMin/+ mouse model. Carcinogenesis 24(2):199–207

    Article  PubMed  CAS  Google Scholar 

  15. Lawler J, Miao WM, Duquette M, Bouck N, Bronson RT, Hynes RO (2001) Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice. Am J Pathol 159(5):1949–1956

    PubMed  CAS  Google Scholar 

  16. Dameron KM, Volpert O, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265(5178):1582–1584

    Article  PubMed  CAS  Google Scholar 

  17. Giuriato S, Ryeom S, Fan AC, Bachireddy P, Lynch RC, Rioth MJ, van Riggelen J, Kopelman AM, Passegue E, Tang F, Folkman J, Felsher DW (2006) Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc Natl Acad Sci USA 103(44):16266–16271

    Article  PubMed  CAS  Google Scholar 

  18. Cooper HS, Murthy S, Kido K, Yoshitake H, Flanigan A (2000) Dysplasia and cancer in the dextran sulfate sodium mouse colitis model. Relevance to colitis-associated neoplasia in the human: a study of histopathology, beta-catenin and p53 expression and the role of inflammation.. Carcinogenesis 21:757

    Article  PubMed  CAS  Google Scholar 

  19. Shiraki M, Aihara H, Kinouchi Y, Takahashi S, Oki M, Noguchi M, Takahashi K, Miyazaki J, Shimosegawa T (2004) IL-12 p40 prevents the development of chronic enterocolitis in IL-10-deficient mice. Lab Invest 84(11):1491–1500

    Article  PubMed  CAS  Google Scholar 

  20. Gavrieli Y, Sherman Y, Ben-Sasson S (1992) Identification of programmed cell death in situ specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  21. Cao Y, O’Reilly MS, Marshall B, Flynn E, Ji RW, Folkman J (1998) Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest 101(5):1055–1063

    Article  PubMed  CAS  Google Scholar 

  22. Bacus S, Flowers JL, Press MF, Bacus JW, McCarty KSL (1988) The evaluation of estrogen receptor in primary breast carcinoma by computer assisted image analysis. Am J Clin Pathol 90:233–239

    PubMed  CAS  Google Scholar 

  23. Tsujitani S, Shirai H, Tatebe S, Sugamura K, Ohfuji S, gomyo Y, Maeta M, Ito H, Kaibara N (1996) Apoptotic cell death and its relationship to carcinogenesis in colorectal carcinoma. Cancer 77:1711–1716

    PubMed  CAS  Google Scholar 

  24. Zhou L, Isenberg JS, Cao Z, Roberts DD (2006) Type I collagen is a molecular target for inhibition of angiogenesis by endogenous thrombospondin-1. Oncogene 25(4):536–545

    PubMed  CAS  Google Scholar 

  25. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    Article  PubMed  CAS  Google Scholar 

  26. Souza HS, Tortori CJ, Castelo-Branco MT, Carvalho AT, Margallo VS, Delgado CF, Dines (2005) Apoptosis in the intestinal mucosa of patients with inflammatory bowel disease: evidence of altered expression of FasL and perforin cytotoxic pathways. Int J Colorectal Dis 20(3):277–286

    Article  PubMed  Google Scholar 

  27. D’Argenio G, Farrace M, Cosenza V, De Ritis F, Della Valle N, Manguso F, Piacentini M (2004) Expression of apoptosis-related proteins in rat with induced colitis. Int J Colorectal Dis 19(5):451–460

    Article  PubMed  Google Scholar 

  28. Quesada AJ, Nelius T, Yap R, Zaichuk TA, Alfranca A, Filleur S, Volpert O, Redondo JM (2005) In vivo upregulation of CD95 and CD95L causes synergistic inhibition of angiogenesis by TSP1 peptide and metronomic doxorubicin treatment. Cell Death Differ 12(6):649–658

    Article  PubMed  CAS  Google Scholar 

  29. Yap R, Veliceasa D, Emmenegger U, Kerbel RS, McKay LM, Henkin J, Volpert OV (2005) Metronomic low-dose chemotherapy boosts CD95-dependent antiangiogenic effect of the thrombospondin peptide ABT-510: a complementation antiangiogenic strategy. Clin Cancer Res 18:6678–6685

    Article  CAS  Google Scholar 

  30. Yoshida T, Mikami T, Mitomi H, Okayasu I (2003) Diverse p53 alterations in ulcerative colitis-associated low grade dysplasia: full-length gene sequencing in microdissected single crypts. J Pathol 199(2):166–175

    Article  PubMed  CAS  Google Scholar 

  31. Fujii S, Fujimori T, Chiba T (2003) Usefulness of analysis of p53 alteration and observation of surface microstructure for diagnosis of ulcerative colitis-associated colorectal neoplasia. J Exp Clin Cancer Res 22(1):107–115

    PubMed  CAS  Google Scholar 

  32. Kim KI, Cho HJ, Hahn JY, Kim TY, Park KW, Koo BK, Shin CS, Kim CH, Oh BH, Lee MM, Park GB, Kim HS (2006) Beta-catenin overexpression augments angiogenesis and skeletal muscle regeneration through dual mechanism of vascular endosthelial growth factor-mediated endothelial cell proliferation and progenitor cell mobilization. Arterioscler Thromb Vasc Biol 26(1):91–98

    Article  PubMed  CAS  Google Scholar 

  33. Punekar S, Zak S, Kalter VG, Dobransky L, Punekar I, Lawler JV, Gutierrez LS (2008) Thrombospondin-1 and its peptide ABT-510, decrease angiogenesis and inflammation in a murine model of inflammatory bowel disease. Pathobiology (In press)

  34. Anderson JC, Grammer JR, Wang W, Nabors LB, Henkin J, Stewart JE Jr, Gladson CL (2007) ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis. Cancer Biol Ther 6(3):454–462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by a National Institutes of Health grant DK067901, a Wilkes University Mentoring grant, and institutional funding from the departments of Biology and Pharmaceutical Sciences at Wilkes University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda S. Gutierrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zak, S., Treven, J., Nash, N. et al. Lack of thrombospondin-1 increases angiogenesis in a model of chronic inflammatory bowel disease. Int J Colorectal Dis 23, 297–304 (2008). https://doi.org/10.1007/s00384-007-0397-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-007-0397-5

Keywords

Navigation