Skip to main content

Advertisement

Log in

Remote ischemic conditioning causes CD4 T cells shift towards reduced cell-mediated inflammation

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Necrotizing enterocolitis (NEC) is a gastrointestinal disease in neonates that is associated with immune-mediated intestinal inflammation. Remote ischemic conditioning (RIC) applied to a limb has been shown to be protective against experimental NEC. In this study, we explore the immune cell-mediated response involved in NEC and the immunomodulatory effects of RIC in an experimental mouse model of the disease.

Methods

NEC was induced in C57BL/6 mice (ethical approval #58119) pups on postnatal day5 (p5) using gavage hyperosmolar formula, lipopolysaccharide, and hypoxia. RIC consisted of 4 cycles of 5 min ischemia followed by 5 min reperfusion of the right hindlimb during NEC induction on p6 and p8. Breastfed mice were used as control. The mice were sacrificed on p9, with ileal tissue evaluated for inflammatory cytokines and by characterization of T-cell populations.

Results

NEC mice had increased number of CD4+ cells indicating an accumulation of T-cells in the mesenchyme of the NEC ileum. Compared to control, NEC pups had upregulated expression pro-inflammatory cytokines (GATA3, IFNγ, IL1β, IL6, IL17, IL22, and TNFα) and reduced anti-inflammatory cytokine (TGFβ). In NEC, there was also a shift in the balance of Treg/Th17 cells towards Th17. Compared to NEC alone, RIC during the course of NEC resulted in reduction of pro-inflammatory cytokines (GATA3, IFNγ, IL1β, IL6, IL17, IL22, and TNFα), increase in anti-inflammatory cytokine TGFβ and concomitant shift back of Th17 cells towards Treg cells.

Conclusion

In experimental NEC, remote ischemic conditioning reduces the production of pro-inflammatory markers and increases the production of anti-inflammatory markers. In addition, during NEC, RIC reverses the imbalance of Treg/Th17 providing support for its effect on cell-mediated inflammation. RIC is a non-invasive physical maneuver that can have a significant beneficial effect in reducing the inflammation seen in NEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neu J, Walker WA (2011) Necrotizing enterocolitis. N Engl J Med 364(3):255–264. https://doi.org/10.1056/NEJMra1005408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thompson AM, Bizzarro MJ (2008) Necrotizing enterocolitis in newborns: pathogenesis, prevention and management. Drugs 68(9):1227–1238. https://doi.org/10.2165/00003495-200868090-00004

    Article  CAS  PubMed  Google Scholar 

  3. Alganabi M, Lee C, Bindi E, Li B, Pierro A (2019) Recent advances in understanding necrotizing enterocolitis. F1000Res J 8:F1000. https://doi.org/10.1268/f1000research.17228.1

    Article  Google Scholar 

  4. Zhang C, Sherman MP, Prince LS, Bader D, Weitkamp JH, Slaughter JC et al (2012) Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice. Dis Model Mech 5(4):522–532. https://doi.org/10.1242/dmm.009001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huda S, Chaudhery S, Ibrahim H, Pramanik A (2014) Neonatal necrotizing enterocolitis: clinical challenges, pathophysiology and management. Pathophysiology 21(1):3–12. https://doi.org/10.1016/j.pathophys.2013.11.009

    Article  PubMed  Google Scholar 

  6. Bazacliu C, Neu J (2019) Necrotizing enterocolitis: long term complications. Curr Pediatr Rev 15(2):115–124. https://doi.org/10.2174/1573396315666190312093119

    Article  PubMed  Google Scholar 

  7. Lim JC, Golden JM, Ford HR (2015) Pathogenesis of neonatal necrotizing enterocolitis. Pediatr Surg Int 31(6):509–518. https://doi.org/10.1007/s00383-015-3697-9

    Article  PubMed  Google Scholar 

  8. Lu P, Sodhi CP, Hackam DJ (2014) Toll-like receptor regulation of intestinal development and inflammation in the pathogenesis of necrotizing enterocolitis. Pathophysiology 21(1):81–93. https://doi.org/10.1016/j.pathophys.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  9. Besner GE (2015) A pain in the NEC: research challenges and opportunities. J Pediatr Surg 50(1):23–29. https://doi.org/10.1016/j.jpedsurg.2014.10.024

    Article  PubMed  Google Scholar 

  10. Patel RM, Denning PW (2015) Intestinal microbiota and its relationship with necrotizing enterocolitis. Pediatr Res 78(3):232–238. https://doi.org/10.1038/pr.2015.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yikilmaz A, Hall NJ, Daneman A, Gerstle JT, Navarro OM, Moineddin R et al (2014) Prospective evaluation of the impact of sonography on the management and surgical intervention of neonates with necrotizing enterocolitis. Pediatr Surg Int 30(12):1231–1240

    Article  Google Scholar 

  12. Su Y, Besner GE (2014) Heparin-binding EGF-like growth factor (HB-EGF) promotes cell migration and adhesion via focal adhesion kinase. J Surg Res 189(2):222–231. https://doi.org/10.1016/j.jss.2014.02.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16(1):3–9. https://doi.org/10.1016/j.smim.2003.10.003

    Article  CAS  PubMed  Google Scholar 

  14. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151. https://doi.org/10.1016/j.cyto.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  15. Leaphart CL, Cavallo J, Gribar SC, Cetin S, Li J, Branca MF et al (2007) A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol 179(7):4808–4820. https://doi.org/10.4049/jimmunol.179.7.4808

    Article  CAS  PubMed  Google Scholar 

  16. Egan CE, Sodhi CP, Good M, Lin J, Jia H, Yamaguchi Y et al (2016) Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest 126(2):495–508. https://doi.org/10.1172/JCI83356

    Article  PubMed  Google Scholar 

  17. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136. https://doi.org/10.1161/01.cir.74.5.1124

    Article  CAS  PubMed  Google Scholar 

  18. Lim SY, Hausenloy DJ (2012) Remote ischemic conditioning: from bench to bedside. Front Physiol 3:27. https://doi.org/10.3389/fphys.2012.00027

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koike Y, Li B, Ganji N, Zhu H, Miyake H, Chen Y et al (2020) Remote ischemic conditioning counteracts the intestinal damage of necrotizing enterocolitis by improving intestinal microcirculation. Nat Commun 11(1):4950. https://doi.org/10.1038/s41467-020-18750-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang J, Shakil F, Cho S (2019) Peripheral mechanisms of remote ischemic conditioning. Cond Med 2(2):61–68

    PubMed  PubMed Central  Google Scholar 

  21. Kim YH, Yoon DW, Kim JH, Lee JH, Lim CH (2014) Effect of remote ischemic post-conditioning on systemic inflammatory response and survival rate in lipopolysaccharide-induced systemic inflammation model. J Inflamm (Lond) 11:16. https://doi.org/10.1186/1476-9255-11-16

    Article  CAS  Google Scholar 

  22. Zhou X, Jiang R, Dong Y, Wang L (2017) Remote ischemic preconditioning attenuates cardiopulmonary bypass-induced lung injury. PLoS One 12(12):e0189501. https://doi.org/10.1371/journal.pone.0189501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MM, Cherepanov V et al (2004) The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics 19(1):143–150. https://doi.org/10.1152/physiolgenomics.00046.2004

    Article  CAS  PubMed  Google Scholar 

  24. Yamoto M, Alganabi M, Chusilp S, Lee D, Yazaki Y, Lee C et al (2020) Lysosomal overloading and necrotizing enterocolitis. Pediatr Surg Int 36(10):1157–1165. https://doi.org/10.1007/s00383-020-04724-x

    Article  PubMed  Google Scholar 

  25. Li B, Wu RY, Horne RG, Ahmed A, Lee D, Robinson SC et al (2020) Human milk oligosaccharides protect against necrotizing enterocolitis by activating intestinal cell differentiation. Mol Nutr Food Res 64(21):e2000519. https://doi.org/10.1002/mnfr.202000519

    Article  CAS  PubMed  Google Scholar 

  26. Miyake H, Lee C, Chusilp S, Bhalla M, Li B, Pitino M et al (2020) Human breast milk exosomes attenuate intestinal damage. Pediatr Surg Int 36(2):155–163. https://doi.org/10.1007/s00383-019-04599-7

    Article  PubMed  Google Scholar 

  27. Miyake H, Chen Y, Koike Y, Hock A, Li B, Lee C et al (2016) Osmolality of enteral formula and severity of experimental necrotizing enterocolitis. Pediatr Surg Int 32(12):1153–1156. https://doi.org/10.1007/s00383-016-3998-7

    Article  PubMed  Google Scholar 

  28. Chen Y, Koike Y, Miyake H, Li B, Lee C, Hock A et al (2016) Formula feeding and systemic hypoxia synergistically induce intestinal hypoxia in experimental necrotizing enterocolitis. Pediatr Surg Int 32(12):1115–1119

    Article  CAS  Google Scholar 

  29. Zani A, Zani-Ruttenstock E, Peyvandi F, Lee C, Li B, Pierro A (2016) A spectrum of intestinal injury models in neonatal mice. Pediatr Surg Int 32(1):65–70. https://doi.org/10.1007/s00383-015-3813-x

    Article  PubMed  Google Scholar 

  30. Yang J, Shakil F, Cho S (2019) Peripheral mechanisms of remote ischemic conditioning. Cond Med 2:61–68

    PubMed  PubMed Central  Google Scholar 

  31. Waite JC, Skokos D (2012) Th17 response and inflammatory autoimmune diseases. Int J Inflam 2012:819467. https://doi.org/10.1155/2012/819467

    Article  CAS  PubMed  Google Scholar 

  32. Yan JB, Luo MM, Chen ZY, He BH (2020) The function and role of the Th17/Treg cell balance in inflammatory bowel disease. J Immunol Res 2020:8813558. https://doi.org/10.1155/2020/8813558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shao S, Yu X, Shen L (2018) Autoimmune thyroid diseases and Th17/Treg lymphocytes. Life Sci 192:160–165. https://doi.org/10.1016/j.lfs.2017.11.026

    Article  CAS  PubMed  Google Scholar 

  34. Shan J, Jin H, Xu Y (2020) T cell metabolism: a new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus. Front Immunol 11:1027. https://doi.org/10.3389/fimmu.2020.01027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee GR (2018) The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci 19(3):730. https://doi.org/10.3390/ijms19030730.PMID:29510522;PMCID:PMC5877591

    Article  PubMed Central  Google Scholar 

  36. Han L, Yang J, Wang X, Li D, Lv L, Li B (2015) Th17 cells in autoimmune diseases. Front Med 9(1):10–19. https://doi.org/10.1007/s11684-015-0388-9

    Article  PubMed  Google Scholar 

  37. Beringer A, Noack M, Miossec P (2016) IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med 22(3):230–241. https://doi.org/10.1016/j.molmed.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  38. Ma F, Li S, Gao X, Zhou J, Zhu X, Wang D et al (2019) Interleukin-6-mediated CCR9+ interleukin-17-producing regulatory T cells polarization increases the severity of necrotizing enterocolitis. EBioMedicine 44:71–85. https://doi.org/10.1016/j.ebiom.2019.05.042

    Article  PubMed  PubMed Central  Google Scholar 

  39. Egan CE, Sodhi CP, Good M, Lin J, Jia H, Yamaguchi Y et al (2016) Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest 126(2):495–508. https://doi.org/10.1172/JCI83356

    Article  PubMed  Google Scholar 

  40. Weitkamp JH, Koyama T, Rock MT, Correa H, Goettel JA, Matta P et al (2013) Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4, CD8) T cell ratios. Gut 62(1):73–82. https://doi.org/10.1136/gutjnl-2011-301551

    Article  CAS  PubMed  Google Scholar 

  41. Dingle BM, Liu Y, Fatheree NY, Min J, Rhoads JM, Tran DQ (2013) FoxP3+ regulatory T cells attenuate experimental necrotizing enterocolitis. PLoS One 8(12):e82963. https://doi.org/10.1371/journal.pone.0082963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lau E, Lee C, Li B, Pierro A (2021) Endoplasmic reticulum stress in the acute intestinal epithelial injury of necrotizing enterocolitis. Pediatr Surg Int 37(9):1151–1160. https://doi.org/10.1007/s00383-021-04929-8

    Article  PubMed  Google Scholar 

  43. Hamner MA, Ye Z, Lee RV, Colman JR, Le T, Gong DC et al (2015) Ischemic preconditioning in white matter: magnitude and mechanism. J Neurosci 35(47):15599–15611. https://doi.org/10.1523/JNEUROSCI.2544-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pradillo JM, Fernández-López D, García-Yébenes I, Sobrado M, Hurtado O, Moro MA et al (2009) Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem 109(1):287–294. https://doi.org/10.1111/j.1471-4159.2009.05972.x

    Article  CAS  PubMed  Google Scholar 

  45. Gliem M, Krammes K, Liaw L, van Rooijen N, Hartung HP, Jander S (2015) Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia 63(12):2198–2207. https://doi.org/10.1002/glia.22885

    Article  PubMed  Google Scholar 

  46. Ejlerskov P, Hultberg JG, Wang J, Carlsson R, Ambjørn M, Kuss M et al (2015) Lack of neuronal IFN-β-IFNAR causes lewy body- and Parkinson’s disease-like dementia. Cell 163(2):324–339. https://doi.org/10.1016/j.cell.2015.08.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY et al (2009) Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29(31):9839–9849. https://doi.org/10.1523/JNEUROSCI.2496-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stevens SL, Leung PY, Vartanian KB, Gopalan B, Yang T, Simon RP et al (2011) Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci 31(23):8456–8463. https://doi.org/10.1523/JNEUROSCI.0821-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao Y, Ren C, Li X, Yu W, Li S, Li H et al (2021) Ischemic conditioning ameliorated hypertension and vascular remodeling of spontaneously hypertensive rat via inflammatory regulation. Aging Dis 12(1):116–131. https://doi.org/10.14336/AD.2020.0320

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alganabi M, Zhu H, O’Connell JS, Biouss G, Zito A, Li B et al (2020) Calcium/calmodulin-dependent protein kinase IV signaling pathway is upregulated in experimental necrotizing enterocolitis. Pediatr Surg Int 36(3):271–277. https://doi.org/10.1007/s00383-019-04615-w

    Article  PubMed  Google Scholar 

  51. Zhu H, Li B, Bindi E, Lee C, Alganabi M, Lok MJ et al (2021) Remote ischemic conditioning avoids the development of intestinal damage after ischemia reperfusion by reducing intestinal inflammation and increasing intestinal regeneration. Pediatr Surg Int 37(3):333–337. https://doi.org/10.1007/s00383-020-04831-9

    Article  PubMed  Google Scholar 

  52. O’Connell JS, Lee C, Farhat N, Antounians L, Zani A, Li B et al (2021) Administration of extracellular vesicles derived from human amniotic fluid stem cells: a new treatment for necrotizing enterocolitis. Pediatr Surg Int 37(3):301–309

    Article  Google Scholar 

Download references

Acknowledgements

AP is the recipient of a Canadian Institutes of Health Research (CIHR) Foundation Grant 353857. The funding had no impact on study design, data collection, analysis, interpretation, the writing of the report, or the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Pierro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was obtained from the ethical review board at The Hospital for Sick Children (#58119).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alganabi, M., Biouss, G., Ganji, N. et al. Remote ischemic conditioning causes CD4 T cells shift towards reduced cell-mediated inflammation. Pediatr Surg Int 38, 657–664 (2022). https://doi.org/10.1007/s00383-022-05093-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-022-05093-3

Keywords

Navigation