Skip to main content

Advertisement

Log in

Bio-engineering of fetal cartilage for in utero spina bifida repair

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

During in utero surgical spina bifida repair, a multi-layer closure is used to cover the defect. These soft tissues, however, might be not sufficient to protect the spinal cord during the future life. Our goal is to develop a more rigid protective tissue construct consisting of bioengineered cartilage and skin.

Methods

Ovine fetal chondrocytes were tested for their in vitro chondrogenic potential in three-dimensional cultures. Scaffolds based on natural biopolymers (collagen I, fibrin glue) were loaded with varying amounts of fetal chondrocytes and assessed for their ability to support cartilage formation in vitro. The bioengineered constructs were analyzed using cartilage-specific histology stainings and compared to native fetal cartilage.

Results

Fetal chondrocytes actively produced cartilage extracellular matrix in three-dimensional cultures, even at high passages. Among all bioengineered scaffolds, only the collagen I-based hydrogels loaded with high densities of fetal chondrocytes showed cartilage-like structure in vitro but also extensive shrinking.

Conclusion

Fetal chondrocytes represent a good cell source for cartilage bioengineering. Collagen I scaffolds support cartilage formation in vitro, but the construct shrinking constitutes a major limitation. Future steps include the identification of suitable bioprintable materials which maintain their shape and size, as well as the analysis of the interphase between bioengineered cartilage and skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adzick SN, Thom EA, Spong CY, Brock JW, Burrows PK, Johnson MP, Howell LJ, Farrell JA, Dabrowiak ME, Sutton LN, Gupta N, Tulipan NB, Alton MED, Farmer DL (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  Google Scholar 

  2. Moehrlen U, Ochsenbein-Kölble N, Mazzone L, Kraehenmann F, Hüsler M, Casanova B, Biro P, Wille D, Latal B, Scheer I, Bernet V, Moehrlen T, Held L, Flake AW, Zimmermann R, Meuli M (2019) Benchmarking against the MOMS trial: Zurich results of open fetal surgery for spina bifida. Fetal Diagn Ther 5:1–7

    Article  Google Scholar 

  3. Shim J-H, Hwang N-H, Yoon E-S, Dhong E-S, Kim D, Kim S-D (2016) Closure of myelomeningocele defects using a Limberg flap or direct repair. Arch Plast Surg 43:26–31

    Article  Google Scholar 

  4. Emsen IM (2015) Closure of large myelomeningocele defects using the O-S flap technique. J Craniofac Surg 26:2167–2170

    Article  Google Scholar 

  5. Meuli M, Meuli-Simmen C, Mazzone L, Tharakan SJ, Zimmermann R, Ochsenbein N, Moehrlen U (2018) In utero plastic surgery in Zurich: successful use of distally pedicled random pattern transposition flaps for definitive skin closure during open fetal spina bifida repair. Fetal Diagn Ther 44:173–178

    Article  Google Scholar 

  6. Agag RL, Granick MS, Ganchi P, Datiashvilli R, Catrambone J (2008) Repair of lumbosacral meningomyeloceles with acelluar cadaveric dermal matrix: an added layer of protection. Eplasty 8:91–100

    Google Scholar 

  7. Schoellhammer L, Gudmundsdottir G, Rasmussen MM, Sandager P, Heje M (2018) Engberg Damsgaard, Repair of myelomeningocele using autologous amnion graft and local flaps. A report of two cases. JPRAS Open 17:9–14

    Article  Google Scholar 

  8. Meuli M, Meuli-Simmen C, Flake AW, Zimmermann R, Ochsenbein N, Scheer I, Mazzone L, Moehrlen U (2013) Premiere use of Integra artificial skin to close an extensive fetal skin defect during open in utero repair of myelomeningocele. Pediatr Surg Int 29:1321–1326

    Article  Google Scholar 

  9. Hosper NA, Eggink AJ, Roelofs LAJ, Wijnen RMH, van Luyn MJA, Bank RA, Harmsen MC, Geutjes PJ, Daamen WF, van Kuppevelt TH, Tiemessen DM, Oosterwijk E, Crevels JJ, Blokx WAM, Lotgering FK, Van Den Berg PP, Feitz WFJ (2010) Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model. Biomaterials 31:3910–3919

    Article  CAS  Google Scholar 

  10. Watanabe M, Li H, Kim AG, Weilerstein A, Radu A, Davey M, Loukogeorgakis S, Sanchez MD, Sumita K, Morimoto N, Yamamoto M, Tabata Y, Flake AW (2016) Complete tissue coverage achieved by scaffold-based tissue engineering in the fetal sheep model of myelomeningocele. Biomaterials 76:133–143

    Article  CAS  Google Scholar 

  11. Mazzone L, Pratsinis M, Pontiggia L, Reichmann E, Meuli M (2016) Successful grafting of tissue-engineered fetal skin. Pediatr Surg Int 32:1177–1182

    Article  CAS  Google Scholar 

  12. Long C, Lankford L, Wang A (2019) Stem cell-based in utero therapies for spina bifida: implications for neural regeneration. Neural Regen Res 14:260–261

    Article  Google Scholar 

  13. Watanabe M, Kim AG, Flake AW (2015) Tissue engineering strategies for fetal myelomeningocele repair in animal models. Fetal Diagn Ther 37:197–205

    Article  Google Scholar 

  14. Winkler SM, Harrison MR, Messersmith PB (2019) Biomaterials in fetal surgery. Biomater Sci 7:3092–3109

    Article  CAS  Google Scholar 

  15. Mazzone L, Pontiggia L, Reichmann E, Ochsenbein-Kölble N, Moehrlen U, Meuli M (2014) Experimental tissue engineering of fetal skin. Pediatr Surg Int 30:1241–1247

    Article  CAS  Google Scholar 

  16. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  CAS  Google Scholar 

  17. Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6:221ra14

    Article  Google Scholar 

  18. Braziulis E, Diezi M, Biedermann T, Pontiggia L, Schmucki M, Hartmann-Fritsch F, Luginbühl J, Schiestl C, Meuli M, Reichmann E (2012) Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes. Tissue Eng Part C 18:464–474

    Article  CAS  Google Scholar 

  19. Armour AD, Powell HM, Boyce ST (2008) Fluorescein diacetate for determination of cell viability in tissue-engineered skin. Tissue Eng Part C 14:89–96

    Article  CAS  Google Scholar 

  20. Caron MMJ, Emans PJ, Coolsen MME, Voss L, Surtel DAM, Cremers A, Van Rhijn LW, Welting TJM (2012) Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil 20:1170–1178

    Article  CAS  Google Scholar 

  21. Kang S-W, Pil S, Kim B-S (2007) Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage. Biomed Mater Eng 17:269–276

    CAS  PubMed  Google Scholar 

  22. Tekari A, Luginbuehl R, Hofstetter W, Egli RJ (2015) Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes. PLoS ONE 10:e0120857

    Article  Google Scholar 

  23. Wang W, Rigueur D, Lyons KM (2014) TGF-β signaling in cartilage development and maintenance. Birth Defects Res C 102:37–51

    Article  CAS  Google Scholar 

  24. Goldberg AJ, Lee DA, Bader DL, Bentley G (2005) Autologous chondrocyte implantation - Culture in a TGF-β-containing medium enhances the reexpression of a chondrocytic phenotype in passaged human chondrocytes in pellet culture. J Bone Joint Surg Br 87B:128–134

    Article  Google Scholar 

  25. Marino D, Reichmann E, Meuli M (2014) Skingineering. Eur J Pediatr Surg 24:205–213

    Article  Google Scholar 

  26. Boyce ST, Lalley AL (2018) Tissue engineering of skin and regenerative medicine for wound care. Burn Trauma 6:4

    Article  Google Scholar 

  27. Woods A, Wang G, Beier F (2007) Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J Cell Physiol 213:1–8

    Article  CAS  Google Scholar 

  28. Cigan AD, Roach BL, Nims RJ, Tan AR, Albro MB, Stoker AM, Cook JL, Vunjak-Novakovic G, Hung CT, Ateshian GA (2016) High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties. J Biomech 49:1909–1917

    Article  Google Scholar 

  29. Huang BJ, Huey DJ, Hu JC, Athanasiou KA (2017) Engineering biomechanically functional neocartilage derived from expanded articular chondrocytes through the manipulation of cell-seeding density and dexamethasone concentration. J Tissue Eng Regen Med 11:2323–2332

    Article  CAS  Google Scholar 

  30. Chen AC, Nagrampa JP, Schinagl RM, Lottman LM, Sah RL (1997) Chondrocyte transplantation to articular cartilage explants in vitro. J Orthop Res 15:791–802

    Article  CAS  Google Scholar 

  31. Talukdar S, Nguyen QT, Chen AC, Sah RL, Kundu SC (2011) Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials 32:8927–8937

    Article  CAS  Google Scholar 

  32. Bartlett W, Skinner JA, Gooding CR, Carrington RWJ, Flanagan AM, Briggs TWR, Bentley G (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87:640–645

    Article  CAS  Google Scholar 

  33. Vinatier C, Gauthier O, Masson M, Malard O, Moreau A, Fellah BH, Bilban M, Spaethe R, Daculsi G, Guicheux J (2008) Nasal chondrocytes and fibrin sealant for cartilage tissue engineering. J Biomed Mater Res, Part A 89A:176–185

    Google Scholar 

  34. Cakmak O, Babakurban ST, Akkuzu HG, Bilgi S, Ovali E, Kongur M, Altintas H, Yilmaz B, Bilezikci B, Celik ZY, Yakicier MC, Sahin FI (2013) Injectable tissue-engineered cartilage using commercially available fibrin glue. Laryngoscope 123:2986–2992

    Article  CAS  Google Scholar 

  35. Chang J, Rasamny JJ, Park SS (2007) Injectable tissue-engineered cartilage using a fibrin sealant. Arch Facial Plast Surg 9:161–166

    Article  Google Scholar 

  36. Scotti C, Mangiavini L, Boschetti F, Vitari F, Domeneghini C, Franschini G, Peretti GM (2010) Effect of in vitro culture on a chondrocyte-fibrin glue hydrogel for cartilage repair. Knee Surg Sport Traumatol Arthrosc 18:1400–1406

    Article  Google Scholar 

  37. Silverman RP, Passaretti D, Huang W, Randolph M, Yaremchuck MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818

    Article  CAS  Google Scholar 

  38. Wysocka A, Mann K, Bursig H, Dec J, Gazdzik T (2010) Chondrocyte suspension in fibrin glue. Cell Tissue Bank 11:209–215

    Article  CAS  Google Scholar 

  39. Sah RL, Lottman LM, Schmidt TA, Mankarious S (2003) Effects of fibrin glue components on chondrocyte growth and matrix formation, In: Annu. Meet. Orthop. Res. Soc. New Orleans

Download references

Acknowledgments

The study was financially supported by the Gaydoul Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ueli Moehrlen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasargyri, A., Reichmann, E. & Moehrlen, U. Bio-engineering of fetal cartilage for in utero spina bifida repair. Pediatr Surg Int 36, 25–31 (2020). https://doi.org/10.1007/s00383-019-04573-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-019-04573-3

Keywords

Navigation