Skip to main content
Log in

The fetal lung-to-liver signal intensity ratio on magnetic resonance imaging as a predictor of outcomes from isolated congenital diaphragmatic hernia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

We investigated the developmental changes in the unaffected contralateral lungs of patients with isolated left-sided congenital diaphragmatic hernia (CDH) using signal intensity ratios on prenatal magnetic resonance imaging (MRI) and determined whether these changes correlated with clinical outcomes.

Methods

We performed 47 fetal MRI screens on 30 patients with isolated left-sided CDH. A cohort of 88 fetuses was selected as the control. We calculated the lung-to-liver signal intensity ratio (LLSIR) using region of interest analysis and compared LLSIR between the groups and between those in the CDH group with good and poor prognoses.

Results

In the control group, LLSIR increased as pregnancy progressed [regression line = 2.232 + 0.135 × (GW—23), r = 0.669]. In the CDH group, especially in the poor prognosis group, LLSIR did not significantly increase as pregnancy progressed [regression line for good prognosis = 1.827 + 0.092 × (gestational week—23), r = 0.733; regression line for poor prognosis = 1.731 + 0.025 × (gestational week—23), r = 0.634].

Conclusion

Fetal LLSIR on T2-weighted MRI is an accurate marker of fetal lung maturity that correlates with postnatal survival and can potentially be used as a prognostic parameter in CDH management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cannie M, Jani J, Chaffiotte C et al (2008) Quantification of intrathoracic liver herniation by magnetic resonance imaging and prediction of postnatal survival in fetuses with congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 32:627–632

    Article  CAS  PubMed  Google Scholar 

  2. Kitano Y, Okuyama H, Saito M et al (2011) Re-evaluation of stomach position as a simple prognostic factor in fetal left congenital diaphragmatic hernia: a multicenter survey in Japan. Ultrasound Obstet Gynecol 37:277–282

    Article  CAS  PubMed  Google Scholar 

  3. Lipshutz GS, Albanese CT, Feldstein VA et al (1997) Prospective analysis of lung-to-head ratio predicts survival for patients with prenatally diagnosed congenital diaphragmatic hernia. J Pediatr Surg 32:1634–1636

    Article  CAS  PubMed  Google Scholar 

  4. Jani J, Nicolaides KH, Keller RL, Antenatal-CDH-Registry Group et al (2007) Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol 30:67–71

    Article  CAS  PubMed  Google Scholar 

  5. Worley KC, Dashe JS, Barber RG et al (2009) Fetal magnetic resonance imaging in isolated diaphragmatic hernia: volume of herniated liver and neonatal outcome. Am J Obstet Gynecol 200:1–6

    Article  Google Scholar 

  6. Cannie M, Jani J, de Keyzer F et al (2009) Diffusion-weighted MRI in lungs of normal fetuses and those with congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 34:678 – 86

    Article  CAS  PubMed  Google Scholar 

  7. Kuwashima S, Nishimura G, Iimura F et al (2001) Low-intensity fetal lungs on MRI may suggest the diagnosis of pulmonary hypoplasia. Pediatr Radiol 31:669–672

    Article  CAS  PubMed  Google Scholar 

  8. Deprest J, Brady P, Nicolaides K et al (2014) Prenatal management of the fetus with isolated congenital diaphragmatic hernia in the era of the TOTAL trial. Semin Fetal Neonatal Med 19:338–348

    Article  PubMed  Google Scholar 

  9. Jani J, Peralta CF, Van Schoubroeck D et al (2006) Relationship between lung-to-head ratio and lung volume in normal fetuses and fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol 27:545–550

    Article  CAS  PubMed  Google Scholar 

  10. Rypens F, Metens T, Rocourt N et al (2001) Fetal lung volume: estimation at MR imaging-initial results. Radiology 219:236–241

    Article  CAS  PubMed  Google Scholar 

  11. Graham G, Devine PC (2005) Antenatal diagnosis of congenital diaphragmatic hernia. Semin Perinatol 29:69–76

    Article  PubMed  Google Scholar 

  12. Nakamura Y, Yamamoto I, Fukuda S et al (1991) Pulmonary acinar development in diaphragmatic hernia. Arch Pathol Lab Med 115:372–376

    CAS  PubMed  Google Scholar 

  13. Kitagawa M, Hislop A, Boyden EA et al (1971) Lung hypoplasia in congenital diaphragmatic hernia. A quantitative study of airway, artery, and alveolar development. Br J Surg 58:342–346

    Article  CAS  PubMed  Google Scholar 

  14. Ting A, Glick PL, Wilcox DT et al (1998) Alveolar vascularization of the lung in a lamb model of congenital diaphragmatic hernia. Am J Respir Crit Care Med 157:31–34

    Article  CAS  PubMed  Google Scholar 

  15. Balassy C, Kasprian G, Brugger PC et al (2007) MRI investigation of normal fetal lung maturation using signal intensities on different imaging sequences. Eur Radiol 17:835–842

    Article  PubMed  Google Scholar 

  16. Keller TM, Rake A, Michel SC et al (2004) MR assessment of fetal lung development using lung volumes and signal intensities. Eur Radiol 14:984–989

    Article  PubMed  Google Scholar 

  17. Moshiri M, Mannelli L, Richardson ML et al (2013) Fetal lung maturity assessment with MRI fetal lung-to-liver signal-intensity ratio. AJR Am J Roentgenol 201:1386–1390

    Article  PubMed  Google Scholar 

  18. Di Fiore JW, Wilson JM (1994) Lung development. Semin Pediatr Surg 3:221–232

    Google Scholar 

  19. Kizilcan F, Tanyel FC, Cakar N et al (1995) The effect of low amniotic pressure without oligohydramnios on fetal lung development in a rabbit model. Am J Obstet Gynecol 173:36–41

    Article  CAS  PubMed  Google Scholar 

  20. Wigglesworth JS, Desai R, Guerrini P (1981) Fetal lung hypoplasia: biochemical and structural variations and their possible significance. Arch Dis Child 56:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Yamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

We received approval from the institutional ethics committee of Shizuoka Children’s Hospital for this study (Approval Number of 2017018).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamoto, M., Iwazaki, T., Takeuchi, K. et al. The fetal lung-to-liver signal intensity ratio on magnetic resonance imaging as a predictor of outcomes from isolated congenital diaphragmatic hernia. Pediatr Surg Int 34, 161–168 (2018). https://doi.org/10.1007/s00383-017-4184-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-017-4184-2

Keywords

Navigation