Skip to main content

Advertisement

Log in

Clinical Utility of Stem Cells in Congenital Anomalies: New Horizons in Pediatric Surgery

  • Review Article
  • Published:
Indian Journal of Surgery Aims and scope Submit manuscript

Abstract

Congenital anomalies account for more than one-third of all pediatric hospital admissions annually. The defect in most cases is absence of normal functioning tissue or dysfunctional tissue. Cure in such cases often requires excision of dysfunctional tissue and replacement by healthy functioning tissue. Such tissues, however, are seldom available. Using the regenerative potential of multipotent stem cells which have the ability to self-renew, differentiate into specialized tissue, and protect healthy tissues against ischemia and inflammation-induced injury represents a lucrative option available to the pediatric surgeons for the management of such cases. Actual clinical use, however, has been limited by stem cell availability and lack of required expertise for their optimal usage. Pediatric surgeons are best-positioned for optimal utilization of stem cells for congenital anomalies, and in this article, the author has reviewed the latest research on stem cell usage in difficult to treat pediatric surgical diseases and its future implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

AF-iPS:

Amniotic fluid-derived induced pluripotent stem

AF-ESC:

Amniotic fluid-derived embryonal pluripotent stem

AF-MSC:

Amniotic fluid-derived mesenchymal stem cell

AF-NSC:

Amniotic fluid derived-neural stem cell

BPD:

Bronchopulmonary dysplasia

CDH:

Congenital diaphragmatic hernia

ENSSCs:

Enteric nervous system stem cells

hESC:

Human embryonic stem cell

iPS:

Induced pluripotent stem

MMC:

Myelomeningocele

MSC:

Mesenchymal stem cells

NEC:

Necrotizing enterocolitis

NLBs:

Neurosphere-like bodies

U-SC:

Umbilical stem cell

P-SC:

Placental stem cell

TRASCET:

Trans-amniotic stem cell therapy

References

  1. Kunisaki SM (2012) Treatment options based on amniotic fluid-derived stem cells. Organogenesis 8:89–95

    Article  Google Scholar 

  2. Cananzi M, Atala A, De Coppi P (2009) Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod BioMed Online 18(Suppl 1):17–27. https://doi.org/10.1016/S1472-6483(10)60111-3

    Article  PubMed  Google Scholar 

  3. Shaw SW, David AL, De Coppi P (2011) Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol 23:109–116

    Article  Google Scholar 

  4. Gupta DK, Sharma S (2005) Stem cell therapy - Hope and scope in paediatric surgery. J Indian Assoc Pediatr Surg 10:138–141

    Article  Google Scholar 

  5. Markel TA, Crisostomo PR, Lahm T, Novotny NM, Rescorla FJ, Tector AJ et al (2008) Stem cell as a potential future of pediatric intestinal disorders. J Pediatr Surg 43:1953–1963. https://doi.org/10.1016/j.jpedsurg.2008.06.019

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530

    Article  CAS  Google Scholar 

  7. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549

    Article  Google Scholar 

  8. Klemmt PA, Vafaizadeh V, Groner B (2011) The potential of amniotic fluid stem cells for cellular therapy and tissue engineering. Expert Opin Biol Ther 11:1297–1314. https://doi.org/10.1517/14712598.2011.587800

    Article  CAS  PubMed  Google Scholar 

  9. Liu T, Zou G, Gao Y, Zhao X, Wang H, Huang Q, Jiang L, Guo L, Cheng W (2012) High efficiency of reprogramming CD34(+) cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev 21:2322–2332. https://doi.org/10.1089/scd.2011.0715

    Article  CAS  PubMed  Google Scholar 

  10. Anchan RM, Quaas P, Gerami-Naini B, Bartake H, Griffin A, Zhou Y, Day D, Eaton JL, George LL, Naber C, Turbe-Doan A, Park PJ, Hornstein MD, Maas RL (2011) Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Hum Mol Genet 20:962–974. https://doi.org/10.1093/hmg/ddq542

    Article  CAS  PubMed  Google Scholar 

  11. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106. https://doi.org/10.1038/nbt1274

    Article  CAS  PubMed  Google Scholar 

  12. Arnhold S, Glüer S, Hartmann K, Raabe O, Addicks K, Wenisch S, Hoopmann M (2011) Amniotic-fluid stem cells: growth dynamics and differentiation potential after a CD-117-based selection procedure. Stem Cells Int 2011:715341–715312. https://doi.org/10.4061/2011/715341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galende E, Karakikes I, Edelmann L, Desnick RJ, Kerenyi T, Khoueiry G, Lafferty J, McGinn JT, Brodman M, Fuster V, Hajjar RJ, Polgar K (2010) Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Rep 12:117–125. https://doi.org/10.1089/cell.2009.0077

    Article  CAS  Google Scholar 

  14. Turner CG, Pennington EC, Gray FL, Ahmed A, Teng YD, Fauza DO (2013) Intra-amniotic delivery of amniotic-derived neural stem cells in a syngeneic model of spina bifida. Fetal Diagn Ther 34:38–43 [cited 2020 Feb 19] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23635813

    Article  Google Scholar 

  15. Drucker NA, McCulloh CJ, Li B, Pierro A, Besner GE, Markel TA (2018) Stem cell therapy in necrotizing enterocolitis: current state and future directions. Semin Pediatr Surg 27:57–64

    Article  Google Scholar 

  16. Lee OK, Kuo TK, Chen WM, Der Lee K, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675 [cited 2020 Feb 19] Available from: http://www.ncbi.nlm.nih.gov/pubmed/14576065

    Article  CAS  Google Scholar 

  17. Adzick NS, Thom EA, Spong CY, Brock JW 3rd, Burrows PK, Johnson MP, Howell LJ, Farrell JA, Dabrowiak ME, Sutton LN, Gupta N, Tulipan NB, D’Alton ME, Farmer DL, MOMS Investigators (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  Google Scholar 

  18. Kunisaki SM (2012) Congenital anomalies: treat-ment options based on amniotic fluid-derived stem cells. Organogenesis 8:89–95

    Article  Google Scholar 

  19. Dionigi B, Ahmed A, Brazzo J 3rd et al (2015) Partial or complete coverage of experimental spina bifida by simple intra-amniotic injection of concentrated amniotic mesenchymal stem cells. J Pediatr Surg 50:69–73

    Article  Google Scholar 

  20. Fauza DO, Jennings RW, Teng YD, Snyder EY (2008) Neural stem cell delivery to the spinal cord in an ovine model of fetal surgery for spina bifida. Surgery 144:367–373. https://doi.org/10.1016/j.surg.2008.05.009

    Article  PubMed  Google Scholar 

  21. Kajiwara K, Tanemoto T, Wada S, Karibe J, Ihara N, Ikemoto Y, Kawasaki T, Oishi Y, Samura O, Okamura K, Takada S, Akutsu H, Sago H, Okamoto A, Umezawa A (2017) Fetal therapy model of myelomeningocele with three-dimensional skin using amniotic fluid cell-derived induced pluripotent stem cells. Stem Cell Rep 8:1701–1713

    Article  Google Scholar 

  22. Kim YH, Ha KY, Kim SIl (2017) Spinal cord injury and related clinical trials. Vol. 9, CiOS Clinics in Orthopedic Surgery. Korean Orthopaedic Association. p. 1–9

  23. Pincott ES, Burch M (2012) Potential for stem cell use in congenital heart disease. Futur Cardiol 8:161–169. https://doi.org/10.2217/fca.12.13

    Article  CAS  Google Scholar 

  24. Yeh YC, Lee WY, Yu CL, Hwang SM, Chung MF, Hsu LW, Chang Y, Lin WW, Tsai MS, Wei HJ, Sung HW (2010) Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials 31:6444–6453. https://doi.org/10.1016/j.biomaterials.2010.04.069

    Article  CAS  PubMed  Google Scholar 

  25. Bollini S, Cheung KK, Riegler J, Dong X, Smart N, Ghionzoli M, Loukogeorgakis SP, Maghsoudlou P, Dubé KN, Riley PR, Lythgoe MF, de Coppi P (2011) Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev 20:1985–1994. https://doi.org/10.1089/scd.2010.0424

    Article  CAS  PubMed  Google Scholar 

  26. Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C et al (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139:431–436, 436, e1–2. https://doi.org/10.1016/j.jtcvs.2009.09.057

    Article  PubMed  Google Scholar 

  27. Weber B, Emmert MY, Behr L, Schoenauer R, Brokopp C, Drögemüller C, Modregger P, Stampanoni M, Vats D, Rudin M, Bürzle W, Farine M, Mazza E, Frauenfelder T, Zannettino AC, Zünd G, Kretschmar O, Falk V, Hoerstrup SP (2012) Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation. Biomaterials 33:4031–4043

    Article  CAS  Google Scholar 

  28. Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, Zund G, Hoerstrup SP (2007) Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation 116(Suppl):I64–I70. https://doi.org/10.1161/CIRCULATIONAHA.106.681494

    Article  PubMed  Google Scholar 

  29. Dijkman PE, Fioretta ES, Frese L, Pasqualini FS, Hoerstrup SP (2016) Heart valve replacements with regenerative capacity. Vol. 43, Transfusion Medicine and Hemotherapy. S. Karger AG. p. 282–90

  30. Fuchs JR, Kaviani A, Oh JT, LaVan D, Udagawa T, Jennings RW, Wilson JM, Fauza DO (2004) Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg 39:834–838. https://doi.org/10.1016/j.jpedsurg.2004.02.014

    Article  PubMed  Google Scholar 

  31. Kunisaki SM, Fuchs JR, Kaviani A, Oh JT, LaVan DA, Vacanti JP et al (2006) Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg 41:34–39. https://doi.org/10.1016/j.jpedsurg.2005.10.011

    Article  PubMed  Google Scholar 

  32. Turner CG, Klein JD, Steigman SA, Armant M, Nicksa GA, Zurakowski D, Ritz J, Fauza DO (2011) Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg 46:57–61. https://doi.org/10.1016/j.jpedsurg.2010.09.063

    Article  PubMed  Google Scholar 

  33. Kotecha S (2000) Lung growth: implications for the newborn infant. Arch Dis Child Fetal Neonatal Ed 82:F69–F74

    Article  CAS  Google Scholar 

  34. Pederiva F, Ghionzoli M, Pierro A, de Coppi P, Tovar JA (2013) Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation, and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transplant 22:1683–1694

    Article  CAS  Google Scholar 

  35. Di Bernardo J, Maiden MM, Hershenson MB et al (2014) Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model. J Pediatr Surg 49:859–864

    Article  Google Scholar 

  36. DeKoninck P, Toelen J, Roubliova X, Carter S, Pozzobon M, Russo FM, Richter J, Vandersloten PJ, Verbeken E, de Coppi P, Deprest J (2015) The use of human amniotic fluid stem cells as an adjunct to promote pulmonary development in a rabbit model for congenital diaphragmatic hernia. Prenat Diagn 35:833–840

    Article  CAS  Google Scholar 

  37. Sharma S, Kumar L, Mohanty S, Kumar R, Gupta SD, Gupta DK (2011) Bone marrow mononuclear stem cell infusion improves biochemical parameters and scintigraphy in infants with biliary atresia. Pediatr Surg Int 27:81–89

    Article  Google Scholar 

  38. Sharma S, Mohanty S, Das P, DattaGupta S, Kumar L, Gupta D (2013) Propitious role of bone marrow-derived mononuclear cells in an experimental bile duct ligation model: potential clinical implications in obstructive cholangiopathy. Pediatr Surg Int 29:623–632

    Article  Google Scholar 

  39. Fujikawa T, Oh SH, Shupe T, Petersen BE (2005) Stem-cell therapy for hepatobiliary pancreatic disease. J Hepato-Biliary-Pancreat Surg 12:190–195

    Article  Google Scholar 

  40. Jungebluth P, Alici E, Baiguera S, Le Blanc K, Blomberg P, Bozóky B et al (2011) Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 378:1997–2004. https://doi.org/10.1016/S0140-6736(11)61715-7

    Article  CAS  PubMed  Google Scholar 

  41. Kunisaki SM, Freedman DA, Fauza DO (2006) Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg 41:675–682, discussion 675-82. https://doi.org/10.1016/j.jpedsurg.2005.12.008

    Article  PubMed  Google Scholar 

  42. Elliott MJ, De Coppi P, Speggiorin S et al (2012) Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 380:994–1000

    Article  Google Scholar 

  43. Weiss DJ (2013) Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010–2012. Ann Am Thorac Soc 10:S45–S97. https://doi.org/10.1513/AnnalsATS.201304-090AW

    Article  PubMed  PubMed Central  Google Scholar 

  44. Steigman SA, Ahmed A, Shanti RM, Tuan RS, Valim C, Fauza DO (2009) Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg 44:1120–1126. https://doi.org/10.1016/j.jpedsurg.2009.02.038

    Article  PubMed  PubMed Central  Google Scholar 

  45. Klein JD, Turner CG, Ahmed A, Steigman SA, Zurakowski D, Fauza DO (2010) Chest wall repair with engineered fetal bone grafts: an efficacy analysis in an autologous leporine model. J Pediatr Surg 45:1354–1360. https://doi.org/10.1016/j.jpedsurg.2010.02.116

    Article  PubMed  Google Scholar 

  46. Turner CG, Klein JD, Gray FL, Ahmed A, Zurakowski D, Fauza DO (2012) Craniofacial repair with fetal bone grafts engineered from amniotic mesenchymal stem cells. J Surg Res 178:785–790. https://doi.org/10.1016/j.jss.2012.05.017

    Article  PubMed  Google Scholar 

  47. Feng C, Graham CD, Connors JP, Brazzo J III, Pan AHS, Hamilton JR, Zurakowski D, Fauza DO (2016) Transamniotic stem cell therapy (TRASCET) miti- gates bowel damage in a model of gastroschisis. J Pediatr Surg 51:56–61

    Article  Google Scholar 

  48. Li CL, Liao WB, Yang SX, Song C, Li YW, Xiong et al (2013) Urethral reconstruction using bone marrow mesenchymal stem cell- and smooth muscle cell-seeded bladder acellular matrix. Transplant Proc 45:3402–3407. https://doi.org/10.1016/j.transproceed.2013.07.055

    Article  CAS  PubMed  Google Scholar 

  49. Liao W, Yang S, Song C, Li X, Li Y, Xiong Y (2013) Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix. Transplant Proc 45:730–734. https://doi.org/10.1016/j.transproceed.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  50. Iannaccone PM, Galat V, Bury MI, Ma YC, Sharma AK (2018) The utility of stem cells in paediatric urinary bladder regeneration. Pediatr Res 83:258–266. https://doi.org/10.1038/pr.2017.229

    Article  CAS  PubMed  Google Scholar 

  51. Fu Q, Cao YL (2012) Tissue engineering and stem cell application of urethroplasty: from bench to bedside. Urology 79:246–253. https://doi.org/10.1016/j.urology.2011.08.043

    Article  PubMed  Google Scholar 

  52. Sidebotham EL, Kenny SE, Lloyd DA, Vaillant CR, Edgar DH (2002) Location of stem cells for the enteric nervous system. Pediatr Surg Int 18:581–585

    Article  CAS  Google Scholar 

  53. Thapar N (2009) New frontiers in the treatment of Hirschsprung disease. J Pediatr Gastroenterol Nutr 48(Suppl 2):S92–S94. https://doi.org/10.1097/MPG.0b013e3181a15d62

    Article  PubMed  Google Scholar 

  54. Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N (2009) Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 136:2214–25.e1–3. https://doi.org/10.1053/j.gastro.2009.02.048

    Article  CAS  PubMed  Google Scholar 

  55. Sommer L (2007) Stem cells of the enteric nervous system: causal therapy for Hirschsprung’s disease. Pathologe 28:125–130

    Article  CAS  Google Scholar 

  56. Zani A, Cananzi M, Eaton S, Pierro A, De Coppi P (2009) Stem cells as a potential treatment of necrotizing enterocolitis. J Pediatr Surg 44:659–660. https://doi.org/10.1016/j.jpedsurg.2008.12.012

    Article  PubMed  Google Scholar 

  57. Zani A, Cananzi M, Fascetti-Leon F, Lauriti G, Smith VV, Bollini S et al (2014) Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut 63:300–309

    Article  CAS  Google Scholar 

  58. McCulloh CJ, Olson JK, Zhou Y, Wang Y, Besner GE (2017) Stem cells and necrotizing enterocolitis: a direct comparison of the efficacy of multiple types of stem cells. J Pediatr Surg 52:999–1005

    Article  Google Scholar 

  59. Zhou Y, Yang J, Watkins DJ, Boomer LA, Matthews MA, Yanwei S et al (2013) Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy. Stem Cell Res Ther 4:157. https://doi.org/10.1186/scrt387

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, Oh WI, Park WS (2013) Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 44:497–504. https://doi.org/10.1161/STROKEAHA.112.679092

    Article  CAS  PubMed  Google Scholar 

  61. Möbius MA, Thébaud B (2015) Stem cells and their mediators –next generation therapy for bronchopulmonary dysplasia. Front Med (Lausanne) 2:50. https://doi.org/10.3389/fmed.2015.00050

    Article  Google Scholar 

  62. Möbius MA, Rüdiger M (2016) Mesenchymal stromal cells in the development and therapy of bronchopulmonary dysplasia. Mol Cell Pediatr 3:18. https://doi.org/10.1186/s40348-016-0046-6

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tenneti P, Zahid U, Iftikhar A, Yun S, Sohail A, Warraich Z, et al. (2018) Role of high-dose chemotherapy and autologous hematopoietic cell transplantation for children and young adults with relapsed Ewing’s sarcoma: a systematic review. Vol. 2018, Sarcoma. Hindawi Limited

  64. Perentesis JP, Katsanis E, DeFor TE, Neglia JP, Ramsay NKC (1999) Autologous stem cell transplantation for high-risk pediatric solid tumors. Bone Marrow Transplant 24:609–615

    Article  CAS  Google Scholar 

  65. Hale GA (2005) Autologous hematopoietic stem cell transplantation for pediatric solid tumors. Vol. 5, Expert review of anticancer therapy. [cited 2020 Feb 17]. p. 835–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16221053

  66. Lanci A, Merlo B, Mariella J, Castagnetti C, Iacono E (2019) Heterologous Wharton’s jelly derived mesenchymal stem cells application on a large chronic skin wound in a 6-month-old filly. Front Vet Sci. Jan 30 [cited 2020 Feb 16];6(JAN):9. Available from: https://www.frontiersin.org/article/10.3389/fvets.2019.00009/full

  67. Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K (2019) Epidermal stem cells in wound healing and their clinical applications. Vol. 10, Stem Cell Research and Therapy. BioMed Central Ltd. p. 1–14

  68. Suzuki A, Iwama A, Miyashita H, Nakauchi H, Taniguchi H (2003) Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development 130:2513–2524

    Article  CAS  Google Scholar 

  69. Marin JJ, Macias RI, Briz O, Banales JM, Monte MJ (2015) Bile acids in physiology, pathology and pharmacology. Curr Drug Metab 17:4–29

    Article  Google Scholar 

  70. Cervantes-Alvarez E, Wang Y, de l’Hortet AC, Guzman-Lepe J, Zhu J, Takeishi K (2017) Current strategies to generate mature human induced pluripotent stem cells derived cholangiocytes and future applications. Organogenesis 13:1–15

    Article  CAS  Google Scholar 

  71. Yokote S, Yamanaka S, Yokoo T (2012) De novo kidney regeneration with stem cells. J Biomed Biotechnol 2012:453519–453510. https://doi.org/10.1155/2012/453519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui JI, Knisely AS, Hirabayashi M, Nakauchi H (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142(5):787–799. https://doi.org/10.1016/j.cell.2010.07.039

    Article  CAS  PubMed  Google Scholar 

  73. Dalal J, Gandy K, Domen J (2012) Role of mesenchymal stem cell therapy in Crohn’s disease. Pediatr Res 71:445–451

    Article  CAS  Google Scholar 

  74. Huang L, Zhang C, Gu J, Wu W, Shen Z, Zhou X, Lu H (2018) A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant 27:325–334. https://doi.org/10.1177/0963689717729379

    Article  PubMed  PubMed Central  Google Scholar 

  75. Carroll J (2012) Human cord blood for the hypoxic-ischemic neonate. Pediatr Res 71:459–463

    Article  CAS  Google Scholar 

  76. Sniecinski I, Seghatchian J (2018) Emerging stem cell based strategies for treatment of childhood diseases. Transfus Apher Sci 57:311–315. https://doi.org/10.1016/j.transci.2018.05.011

    Article  PubMed  Google Scholar 

  77. Snyder J, Turner L, Crooks VA (2018) Crowd funding for unproven stem cell-based interventions. JAMA 319:1935–1936. https://doi.org/10.1001/jama.2018.3057

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456

    Article  Google Scholar 

  79. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  80. Kim J, Lee Y, Kim H, Hwang KJ, Kwon HC, Kim SK et al (2007) Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 40:75–90

    Article  CAS  Google Scholar 

  81. Heijnen CJ, Witt O, Wulffraat N, Kulozik AE (2012) Stem cells in paediatrics: state of the art and future perspectives. Paediatr Res 71:407–409

    Article  Google Scholar 

  82. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I acknowledge to my teacher Prof Shiv Narayan Kureel, Department of Pediatric Surgery, King George Medical University, Lucknow, India for constant encouragement and knowledge.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to analytic framing and writing the review.

 

Author-1

Author-2

Author-3

Author-4

Author-5

Author-6

Author-7

Conceptualization

Study design

Project writing and management

Defining the study

Extensive literature search

Actually performing the study viz. experiments, operative work, practical work

 

Data acquisition

Data analysis

Statistical inferences,

manuscript writing, and repeated editing

Reviewing of the manuscript

Read and approved the final manuscript

Corresponding author

Correspondence to Sunita Singh.

Ethics declarations

Conflict of Interest

All the authors declare that they have no conflict of interest regarding funding, authorship and publication issues.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Varshney, A., Borkar, N. et al. Clinical Utility of Stem Cells in Congenital Anomalies: New Horizons in Pediatric Surgery. Indian J Surg 82, 1219–1228 (2020). https://doi.org/10.1007/s12262-020-02264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12262-020-02264-1

Keywords

Navigation