Skip to main content

Advertisement

Log in

The effect of the equatorial Pacific cold SST bias on simulated ENSO teleconnections to the North Pacific and California

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Precipitation in California is modulated by variability in the tropical Pacific associated with El Niño/Southern Oscillation (ENSO): more rainfall is expected during El Niño episodes, and reduced rainfall during La Niña. It has been suggested that besides the shape and location of the sea surface temperature (SST) anomaly this remote connection depends on the strength and location of the atmospheric convection response in the tropical Pacific. Here we show in a perturbed physics ensemble of the Kiel Climate Model and CMIP5 models that due to a cold equatorial SST bias many climate models are in a La Niña-like mean state, resulting in a too westward position of the rising branch of the Pacific Walker Circulation. This in turn results in a convective response along the equator during ENSO events that is too far west in comparison to observations. This effect of the equatorial cold SST bias is not restricted to the tropics, moreover it leads to a too westward SLP response in the North Pacific and too westward precipitation response that does not reach California. Further we show that climate models with a reduced equatorial cold SST bias have a more realistic representation of the spatial asymmetry of the teleconnections between El Niño and La Niña.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Ayarzagüena B, Ineson S, Dunstone NJ, Baldwin MP, Scaife AA (2018) Intraseasonal effects of El Niño-Southern Oscillation on North Atlantic climate. J Clim 31:8861–8873. https://doi.org/10.1175/JCLI-D-18-0097.1

    Article  Google Scholar 

  • Banzon V, Smith TM, Chin TM, Liu C, Hankins W (2016) A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst Sci Data 8(1):165–176. https://doi.org/10.5194/essd-8-165-2016

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Bayr T, Dommenget D (2013) The tropospheric land–sea warming contrast as the driver of tropical sea level pressure changes. J Clim 26(4):1387–1402. https://doi.org/10.1175/JCLI-D-11-00731.1

    Article  Google Scholar 

  • Bayr T, Dommenget D, Martin T, Power SB (2014) The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Clim Dyn 43(9):2747–2763. https://doi.org/10.1007/s00382-014-2091-y

    Article  Google Scholar 

  • Bayr T, Latif M, Dommenget D, Wengel C, Harlaß J, Park W (2018a) Mean-state dependence of ENSO atmospheric feedbacks in climate models. Clim Dyn 50(9–10):3171–3194. https://doi.org/10.1007/s00382-017-3799-2

    Article  Google Scholar 

  • Bayr T, Wengel C, Latif M, Dommenget D, Lübbecke J, Park W (2018b) Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Clim Dyn. https://doi.org/10.1007/s00382-018-4575-7

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42(7–8):1999–2018. https://doi.org/10.1007/s00382-013-1783-z

    Article  Google Scholar 

  • Brönnimann S (2007) Impact of El Niño-Southern Oscillation on European climate. Rev Geophys 45(3):1–28

    Article  Google Scholar 

  • Butler AH, Polvani LM (2011) El Niño, La Niña, and stratospheric sudden warmings: a reevaluation in light of the observational record. Geophys Res Lett 38(13):L13–807. https://doi.org/10.1029/2011GL048084

    Article  Google Scholar 

  • Butler AH, Arribas A, Athanassiadou M, Baehr J, Calvo N, Charlton-Perez A, Déqué M, Domeisen DIV, Fröhlich K, Hendon H, Imada Y, Ishii M, Iza M, Karpechko AY, Kumar A, MacLachlan C, Merryfield WJ, Müller WA, O’Neill A, Scaife AA, Scinocca J, Sigmond M, Stockdale TN, Yasuda T (2016) The Climate-system Historical Forecast Project: do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Q J R Meteorol Soc 142(696):1413–1427

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin FF, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh SW (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938

    Article  Google Scholar 

  • Cayan DR, Redmond KT, Riddle LG (1999) ENSO and hydrologic extremes in the Western United States: EBSCOhost. J Clim 12:2881–2893

    Article  Google Scholar 

  • Chen Z, Gan B, Wu L, Jia F (2018) Pacific-North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models. Clim Dyn 50(11–12):4379–4403. https://doi.org/10.1007/s00382-017-3881-9

    Article  Google Scholar 

  • Chiew FHS, Piechota TC, Dracup JA, McMahon TA (1998) El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: links and potential for forecasting. J Hydrol 204(1–4):138–149

    Article  Google Scholar 

  • Chiodi AM, Harrison DE (2013) El Niño impacts on seasonal US atmospheric circulation, temperature, and precipitation anomalies: the OLR-event perspective*. J Clim 26(3):822–837

    Article  Google Scholar 

  • Chiodi AM, Harrison DE (2015) Global seasonal precipitation anomalies robustly associated with El Niño and La Niña events—an OLR perspective*. J Clim 28(15):6133–6159

    Article  Google Scholar 

  • Davey M, Huddleston M, Sperber K, Braconnot P, Bryan F, Chen D, Colman R, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Latif M, Le Treut H, Li T, Manabe S, Mechoso C, Meehl G, Power S, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington W, Yoshikawa I, Yu J, Yukimoto S, Zebiak S (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18(5):403–420. https://doi.org/10.1007/s00382-001-0188-6

    Article  Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P, Bechtold P, Beljaars A, Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A, Haimberger L, Healy S, Hersbach H, Holm E, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A, Monge-Sanz B, Morcrette J, Park B, Peubey C, Rosnay Pd, Tavolato C, Thepaut J, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Royal Met Soc 137:553–597

    Article  Google Scholar 

  • Deser C, Simpson IR, McKinnon KA, Phillips AS, Deser C, Simpson IR, McKinnon KA, Phillips AS (2017) The Northern Hemisphere extra-tropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J Clim. https://doi.org/10.1175/JCLI-D-16-0844.1

  • Deser C, Simpson IR, Phillips AS, McKinnon KA (2018) How well do we know ENSO’s climate impacts over North America, and how do we evaluate models accordingly? J Clim 31(13):4991–5014. https://doi.org/10.1175/JCLI-D-17-0783.1

    Article  Google Scholar 

  • Ding S, Chen W, Graf HF, Guo Y, Nath D (2017) Distinct winter patterns of tropical Pacific convection anomaly and the associated extratropical wave trains in the Northern Hemisphere. Clim Dyn 4(C11):1147

    Google Scholar 

  • Domeisen DIV, Butler AH, Fröhlich K, Bittner M, Müller WA, Baehr J (2015) Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI-ESM seasonal prediction system. J Clim 28(1):256–271

    Article  Google Scholar 

  • Domeisen DIV, Garfinkel CI, Butler AH (2019) The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev Geophys. https://doi.org/10.1029/2018RG000596

  • Dommenget D, Haase S, Bayr T, Frauen C (2014) Analysis of the Slab Ocean El Nino atmospheric feedbacks in observed and simulated ENSO dynamics. Clim Dyn 42(11–12):3187–3205

    Article  Google Scholar 

  • Dong L, Leung LR, Song F, Lu J (2018) Roles of SST versus internal atmospheric variability in winter extreme precipitation variability along the US West Coast. J Clim 31(19):8039–8058. https://doi.org/10.1175/JCLI-D-18-0062.1

    Article  Google Scholar 

  • Drews A, Greatbatch RJ, Ding H, Latif M, Park W (2015) The use of a flow field correction technique for alleviating the North Atlantic cold bias with application to the Kiel Climate Model. Ocean Dyn 65(8):1079–1093. https://doi.org/10.1007/s10236-015-0853-7

    Article  Google Scholar 

  • Dunstone N, Smith D, Scaife A, Hermanson L, Eade R, Robinson N, Andrews M, Knight J (2016) Skilful predictions of the winter North Atlantic Oscillation 1 year ahead. Nat Geosci 9(11):809–814

    Article  Google Scholar 

  • Frauen C, Dommenget D, Tyrrell N, Rezny M, Wales S (2014) Analysis of the nonlinearity of El Niño-Southern Oscillation teleconnections*. J Clim 27(16):6225–6244

    Article  Google Scholar 

  • Garfinkel CI, Butler AH, Waugh DW, Hurwitz MM, Polvani LM (2012a) Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J Geophys Res Atmos 117. https://doi.org/10.1029/2012JD017777

    Article  Google Scholar 

  • Garfinkel CI, Hurwitz MM, Waugh DW, Butler AH (2012b) Are the teleconnections of Central Pacific and Eastern Pacific El Niño distinct in boreal wintertime? Clim Dyn 41(7–8):1835–1852

    Google Scholar 

  • Garfinkel CI, Weinberger I, White IP, Oman LD, Aquila V, Lim YK (2018) The salience of nonlinearities in the boreal winter response to ENSO: North Pacific and North America. Clim Dyn 4(C11):1147

    Google Scholar 

  • Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024. https://doi.org/10.1029/2010JC006695

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462. https://doi.org/10.1002/qj.49710644905

    Article  Google Scholar 

  • Guan C, McPhaden MJ (2016) Ocean processes affecting the twenty-first-century shift in ENSO SST variability. J Clim 29(19):6861–6879

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90(3):325–340. https://doi.org/10.1175/2008BAMS2387.1

    Article  Google Scholar 

  • Harlaß J, Latif M, Park W (2015) Improving climate model simulation of tropical Atlantic sea surface temperature: the importance of enhanced vertical atmosphere model resolution. Geophys Res Lett 42(7):2401–2408. https://doi.org/10.1002/2015GL063310

    Article  Google Scholar 

  • Hoell A, Hoerling M, Eischeid J, Wolter K, Dole R, Perlwitz J, Xu T, Cheng L (2016) Does El Niño intensity matter for California precipitation? Geophys Res Lett 43(2):819–825

    Article  Google Scholar 

  • Hoskins BJ, Karoly D (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(06):1179–1196

    Article  Google Scholar 

  • Hurwitz MM, Song IS, Oman LD, Newman PA, Molod AM, Frith SM, Nielsen JE (2011) Response of the Antarctic stratosphere to warm pool El Niño Events in the GEOS CCM. Atmos Chem Phys 11(18):9659–9669

    Article  Google Scholar 

  • Jiménez-Esteve B, Domeisen DI (2019) Nonlinearity in the North Pacific atmospheric response to a linear ENSO forcing. Geophys Res Lett. https://doi.org/10.1029/2018gl081226

  • Jiménez-Esteve B, Domeisen DIV (2018) The Tropospheric Pathway of the ENSO-North Atlantic Teleconnection. J Clim. https://doi.org/10.1175/JCLI-D-17-0716.1

  • Johnson NC, Kosaka Y (2016) The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Clim Dyn 47(12):3737–3765. https://doi.org/10.1007/s00382-016-3039-1

    Article  Google Scholar 

  • Jong BT, Ting M, Seager R (2016) El Niño’s impact on California precipitation: seasonality, regionality, and El Niño intensity. Environ Res Lett 11(5):054021

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22(3):615–632. https://doi.org/10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Kim WM, Cai W (2014) The importance of the eastward zonal current for generating extreme El Niño. Clim Dyn 42(11–12):3005–3014. https://doi.org/10.1007/s00382-013-1792-y

    Article  Google Scholar 

  • Kug J-S, Ham Y-G (2011) Are there two types of La Nina? Geophys Res Lett 38:L16704. https://doi.org/10.1029/2011GL048237

    Article  Google Scholar 

  • Kumar A, Chen M (2017) What is the variability in US west coast winter precipitation during strong El Niño events? Clim Dyn 49(7–8):2789–2802. https://doi.org/10.1007/s00382-016-3485-9

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32. https://doi.org/10.1029/2005GL022860

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2009) El Niño/Southern Oscillation response to global warming. PNAS 106(49):20578–20583

    Article  Google Scholar 

  • Leathers DJ, Palecki MA (1992) The Pacific/North American teleconnection pattern and United States climate. Part II: Temporal characteristics and index specification. J Clim 5(7):707–716

    Article  Google Scholar 

  • Leathers DJ, Yarnal B, Palecki MA (1991) The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J Clim 4(5):517–528

    Article  Google Scholar 

  • Lee SK, Lopez H, Chung ES, DiNezio P, Yeh SW, Wittenberg AT (2018) On the Fragile relationship between El Niño and California rainfall. Geophys Res Lett 45(2):907–915. https://doi.org/10.1002/2017GL076197

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Society 77(6):1275–1277

    Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J Clim 25(12):4275–4293. https://doi.org/10.1175/JCLI-D-11-00178.1

    Article  Google Scholar 

  • Lu J, Chen G, Frierson DMW (2008) Response of the zonal mean atmospheric circulation to El Niño versus global warming. J Clim 21:5835–5851. https://doi.org/10.1175/2008JCLI2200.1

    Article  Google Scholar 

  • MacDonald GM, Kremenetski KV, Hidalgo HG (2008) Southern California and the perfect drought: simultaneous prolonged drought in southern California and the Sacramento and Colorado River systems. Q Int 188(1):11–23

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation 27, Institut Pierre-Simon Laplace p 193

  • Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D, Mikolajewicz U, Notz D, Pincus R, Schmidt H, Tomassini L (2012) Tuning the climate of a global model. J Adv Model Earth Syst 4(3) https://doi.org/10.1029/2012MS000154

  • McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39(9)

  • Mo KC, Higgins RW (1998) Tropical influences on California precipitation. J Clim 11(3):412–430

    Article  Google Scholar 

  • Mo KC, Livezey RE (1986) Tropical-extratropical geopotential height teleconnections during the Northern Hemisphere Winter. Mon Weather Rev 114(12):2488–2515

    Article  Google Scholar 

  • Paek H, Yu JY, Qian C (2017) Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys Res Lett 44(4):1848–1856. https://doi.org/10.1002/2016GL071515

    Article  Google Scholar 

  • Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel Climate model. J Clim 22(1):71–92

    Article  Google Scholar 

  • Piechota TC, Dracup JA (1996) Drought and regional hydrologic variations in the United States: associations with the El Niño-Southern Oscillation. Water Resour Res 32(5):1359–1373

    Article  Google Scholar 

  • Piechota TC, Dracup JA, Fovell RG (1997) Western US streamflow and atmospheric circulation patterns during El Niño-Southern Oscillation. J Hydrol 201(1–4):249–271

    Article  Google Scholar 

  • Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Niño/Southern Oscillation. Science 222:1195–1202

    Article  Google Scholar 

  • Roeckner E, Baeuml G, Bonventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: Model description. 349, Max Planck Institute for Meteorology, Hamburg, Germany

  • Schonher T, Nicholson SE (1989) The relationship between California Rainfall and Enso Events. J Clim 2(11):1258–1269

    Article  Google Scholar 

  • Seager R, Naik N, Ting M, Cane MA, Harnik N, Kushnir Y (2010) Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: variability of transient eddy propagation in the Pacific-North America sector. Q J R Meteorol Society 136:277–296

    Google Scholar 

  • Siler N, Kosaka Y, Xie SP, Li X (2017) Tropical ocean contributions to California’s surprisingly dry El Niño of 2015/16. J Clim 30(24):10,067–10,079. https://doi.org/10.1175/JCLI-D-17-0177.1

    Article  Google Scholar 

  • Sun Y, Wang F, Sun DZ (2016) Weak ENSO asymmetry due to weak nonlinear air–sea interaction in CMIP5 climate models. Adv Atmos Sci 33(3):352–364. https://doi.org/10.1007/s00376-015-5018-6

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627. https://doi.org/10.1109/27.659538

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Ga Meehl (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Timmermann A, Si An, Js Kug, Ff Jin, Cai W, Cobb K, Lengaigne M, Mcphaden MJ, Malte F, Stein K, Wittenberg AT, Ks Yun, Bayr T, Hc Chen, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Yg Ham, Hayashi M, Ineson S, Kang D, Kim W, Jy Lee, Li T, Jj Luo, Mcgregor S, Power S, Rashid H, Hl Ren, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang Wh, Yeh W, Yoon J, Zeller E, Zhang X (2018) El Niño-Southern Oscillation Complexity. Nature. https://doi.org/10.1038/s41586-018-0252-6

  • Tompkins AM (1997) On the relationship between tropical convection and sea surface temperature. J Clim 14:633–637

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Society 78(12):2771–2777

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Nino evolution. J Clim 14(8):1697–1701

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 198103(C7):14291–14324

    Article  Google Scholar 

  • Vannière B, Guilyardi E, Madec G, Doblas-Reyes FJ, Woolnough S (2013) Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Clim Dyn 40(3–4):963–981. https://doi.org/10.1007/s00382-012-1429-6

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109(4):784–812

    Article  Google Scholar 

  • Wang S, Anichowski A, Tippett MK, Sobel AH (2017) Seasonal noise versus subseasonal signal: forecasts of California precipitation during the unusual winters of 2015–2016 and 2016–2017. Geophys Res Lett 44(18):9513–9520. https://doi.org/10.1002/2017GL075052

    Article  Google Scholar 

  • Wang Z, Kuhlbrodt T, Meredith MP (2011) On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. J Geophys Res 116(C8):C08–011. https://doi.org/10.1029/2010JC006757

    Article  Google Scholar 

  • Wengel C, Latif M, Park W, Harlaß J, Bayr T (2018) Seasonal ENSO phase locking in the Kiel Climate Model: the importance of the equatorial cold sea surface temperature bias. Clim Dyn 50(3–4):901–919. https://doi.org/10.1007/s00382-017-3648-3

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on Gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558

    Article  Google Scholar 

  • Yoon Jin-Ho, Leung L Ruby (2015) Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States. Geophys Res Lett 42:5005–5013. https://doi.org/10.1002/2015GL064139

    Article  Google Scholar 

  • Zhang T, Perlwitz J, Hoerling MP (2014) What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys Res Lett 41(3):1019–1025

    Article  Google Scholar 

  • Zhang T, Hoerling MP, Wolter K, Eischeid J, Cheng L, Hoell A, Perlwitz J, Quan XW, Barsugli J (2018a) Predictability and prediction of Southern California rains during Strong El Nino Events: a focus on the failed 2016 winter rains. J Clim 31(2):555–574

    Article  Google Scholar 

  • Zhang W, Wang Z, Stuecker MF, Turner AG, Jin FF, Geng X (2018b) Impact of ENSO longitudinal position on teleconnections to the NAO. Clim Dyn 15:2205–18

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments that helped to improve the manuscript. We acknowledge the World Climate Research Program’s Working Group on Coupled Modeling, the individual modeling groups of the Climate Model Intercomparison Project (CMIP5), NOAA and ECMWF for providing the data sets. The climate model integrations of the KCM and ECHAM5 were performed at the Computing Centre of Kiel University and the Northern German Supercomputing Alliance (HLRN). This work is supported by the SFB grant 754 “Climate-Biochemistry Interactions in the tropical Ocean”, the Swiss National Science Foundation through Grant no. PP00P2_170523, and the German Ministry of Education and Research (BMBF) through Grant SACUS (03G0837A). The authors would like to thank Mojib Latif, Dietmar Dommenget and Gereon Gollan for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Bayr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayr, T., Domeisen, D.I.V. & Wengel, C. The effect of the equatorial Pacific cold SST bias on simulated ENSO teleconnections to the North Pacific and California. Clim Dyn 53, 3771–3789 (2019). https://doi.org/10.1007/s00382-019-04746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04746-9

Keywords

Navigation