Skip to main content

Advertisement

Log in

Seasonal ENSO phase locking in the Kiel Climate Model: The importance of the equatorial cold sea surface temperature bias

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The El Niño/Southern Oscillation (ENSO) is characterized by a seasonal phase locking, with strongest eastern and central equatorial Pacific sea surface temperature (SST) anomalies during boreal winter and weakest SST anomalies during boreal spring. In this study, key feedbacks controlling seasonal ENSO phase locking in the Kiel Climate Model (KCM) are identified by employing Bjerknes index stability analysis. A large ensemble of simulations with the KCM is analyzed, where the individual runs differ in either the number of vertical atmospheric levels or coefficients used in selected atmospheric parameterizations. All integrations use the identical ocean model. The ensemble-mean features realistic seasonal ENSO phase locking. ENSO phase locking is very sensitive to changes in the mean-state realized by the modifications described above. An excessive equatorial cold tongue leads to weak phase locking by reducing the Ekman feedback and thermocline feedback in late boreal fall and early boreal winter. Seasonal ENSO phase locking also is sensitive to the shortwave feedback as part of the thermal damping in early boreal spring, which strongly depends on eastern and central equatorial Pacific SST. The results obtained from the KCM are consistent with those from models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An S-I, Jin F-F (2000) An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys Res Lett 27:2573–2576. doi:10.1029/1999GL011090

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere–ocean model: influence of the basic state, ocean geometry and nonlinearity. J AtmosSci 46:1687–1712

    Article  Google Scholar 

  • Bayr T, Dommenget D (2013) The tropospheric land-sea warming contrast as the driver of tropical sea level pressure changes. J Climate 26:1387–1402

    Article  Google Scholar 

  • Bejarano L, Jin F-F (2008) Coexistence of equatorial coupled modes of ENSO. J Clim 21:3051–3067. doi:10.1175/2007JCLI1679.1

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, et al (2014) ENSO representation in climate models: From CMIP3 to CMIP5. ClimDyn 42:1999–2018. doi:10.1007/s00382-013-1783-z

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific 1. Mon Weather Rev 97:163–172. doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2

    Article  Google Scholar 

  • Brönnimann S, Luterbacher J, Staehelin J et al (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature 431:971–974. doi:10.1038/nature02982

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017. doi:10.1175/2007MWR1978.1

    Article  Google Scholar 

  • Chang P, Wang B, Li T, Ji L (1995) Interactions between the seasonal cycle and the Southern Oscillation—frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophys Res Lett 21:2817–2820. doi:10.1029/94GL02759

    Article  Google Scholar 

  • Davey MK, Huddleston M, Sperber KR, et al (2002) STOIC: a study of coupled model climatology and variability in tropical regions. ClimDyn 118:403–420

  • Dommenget D, Yu Y (2016) The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking. ClimDyn 47:1–12. doi:10.1007/s00382-016-3034-6

  • Dommenget D, Haase S, Bayr T, Frauen C (2014) Analysis of the Slab Ocean El Nino atmospheric feedbacks in observed and simulated ENSO dynamics. ClimDyn 42:3187–3205. doi:10.1007/s00382-014-2057-0

  • Duan WS, Zhang R, Yu YS, Tian B (2013) The role of nonlinearities associated with air-sea coupling processes in El Niño’s peak-phase locking. Sci China. Earth Sci 56:1988–1996. doi:10.1007/s11430-013-4629-y

    Google Scholar 

  • Fedorov AV, Philander SG (2001) A Stability Analysis of Tropical Ocean–Atmosphere Interactions: Bridging Measurements and Theory for El Niño. J Clim 14:3086–3101. doi:10.1175/1520-0442(2001)014<3086:ASAOTO>2.0.CO;2

    Article  Google Scholar 

  • Graham FS, Brown JN, Langlais C, et al (2014) Effectiveness of the Bjerknes stability index in representing ocean dynamics. ClimDyn 43:1–16. doi:10.1007/s00382-014-2062-3

  • Guilyardi E (2006) El Niño-mean state—Seasonal cycle interactions in a multi-model ensemble. ClimDyn 26:329–348. doi:10.1007/s00382-005-0084-6

  • Guilyardi E, Wittenberg A, Fedorov A, et al (2009) Understanding El Niño in Ocean–atmosphere general circulation models: progress and challenges. Bull Am MeteorolSoc 90:325–340. doi:10.1175/2008BAMS2387.1

  • Ham Y-G, Kug J-S (2014) ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. ClimDyn 43:305–318. doi:10.1007/s00382-014-2064-1

  • Ham Y-G, Kug J-S, Kim D-H, et al (2012) What controls phase-locking of ENSO to boreal winter in coupled GCMs? ClimDyn 40:1551–1568. doi:10.1007/s00382-012-1420-2

  • Harlaß J, Latif M, Park W (2015) Improving climate model simulation of tropical Atlantic sea surface temperature: The importance of enhanced vertical atmosphere model resolution. Geophys Res Lett 42:2401–2408. doi:10.1002/2015GL063310

    Article  Google Scholar 

  • Harrison DE, Vecchi GA (1999) On the termination of El Niño. Geophys Res Lett 26:1593–1596. doi:10.1029/1999GL900316

    Article  Google Scholar 

  • Jin EK, Kinter JL (2009) Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. ClimDyn 32:675–691. doi:10.1007/s00382-008-0418-2

  • Jin F-F, Neelin JD, Ghil M (1996) El Niño/Southern Oscillation and the annual cycle: subharmonic frequency-locking and aperiodicity. Phys D Nonlinear Phenom 98:442–465. doi:10.1016/0167-2789(96)00111-X

  • Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:2–5. doi:10.1029/2006GL027221

    Google Scholar 

  • Kim ST, Jin F-F (2011a) An ENSO stability analysis. Part I: Results from a hybrid coupled model. ClimDyn 36:1593–1607. doi:10.1007/s00382-010-0796-0

  • Kim ST, Jin F-F (2011b) An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. ClimDyn 36:1609–1627. doi:10.1007/s00382-010-0872-5

  • Kim D, Jang Y-S, Kim D-H et al (2011) El Niño-Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J Geophys Res Atmos 116:D22112. doi:10.1029/2011JD016526

    Google Scholar 

  • Kim ST, Cai W, Jin F-F, Yu J-Y (2013) ENSO stability in coupled climate models and its association with mean state. ClimDyn 42:3313–3321. doi:10.1007/s00382-013-1833-6

  • Klein S, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606

    Article  Google Scholar 

  • Lacagnina C, Selten F (2013) Changes in the cloud properties in response to El Niño: a bivariate approach. ClimDyn 40:2973–2991. doi:10.1007/s00382-012-1645-0

  • Latif M, Graham NE (1992) How Much Predictive Skill Is Contained in the Thermal Structure of an Oceanic GCM? J Phys Oceanogr 22:951–962

    Article  Google Scholar 

  • Latif M, Sperber K, Arblaster J, et al (2001) ENSIP: the El Nino simulation intercomparison project. ClimDyn 18:255–276. doi:10.1007/s003820100174

  • Latif M, Semenov VA, Park W (2015) Super El Niños in response to global warming in a climate model. Clim Change 132:489–500. doi:10.1007/s10584-015-1439-6

  • Levine AFZ, McPhaden MJ (2015) The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys Res Lett 42:5034–5041. doi:10.1002/2015GL064309

    Article  Google Scholar 

  • Li G, Xie S-P (2014) Tropical Biases in CMIP5 Multimodel Ensemble: The Excessive Equatorial Pacific Cold Tongue and Double ITCZ Problems. J Clim 27:1765–1780

    Article  Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J Clim 25:4275–4293. doi:10.1175/JCLI-D-11-00178.1

    Article  Google Scholar 

  • Lübbecke JF, Mcphaden MJ (2013) A comparative stability analysis of Atlantic and Pacific Niño modes. J Clim 26:5965–5980. doi:10.1175/JCLI-D-12-00758.1

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation 27, Institut Pierre-Simon Laplace

  • Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1 Ocean General Circulation Model Reference Manual. Note du Pole de modélisation 11, Institut Pierre-Simon Laplace

  • Mauritsen T, Stevens B, Roeckner E et al (2012) Tuning the climate of a global model. J Adv Model Earth Syst. doi:10.1029/2012MS000154

    Google Scholar 

  • McGregor S, Timmermann A, Schneider N et al (2012) The Effect of the South Pacific Convergence Zone on the Termination of El Niño Events and the Meridional Asymmetry of ENSO. J Clim 25:5566–5586. doi:10.1175/JCLI-D-11-00332.1

    Article  Google Scholar 

  • McGregor S, Ramesh N, Spence P et al (2013) Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys Res Lett 40:749–754. doi:10.1002/grl.50136

    Article  Google Scholar 

  • Neelin, JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. JGR Ocean 103: 14261–14290. doi:10.1029/97JC03424

  • Neelin JD, Jin F-F, Syu HH (2000) Variations in ENSO phase locking. J Clim 13:2570–2590. doi:10.1175/1520-0442(2000)013<2570:VIEPL>2.0.CO;2

    Article  Google Scholar 

  • Nordeng TE (1994) Extended Versions of the Convective Parametrization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. In Technical Memorandum; European Center for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 1994

  • Park W, Keenlyside N, Latif M et al (2009) Tropical Pacific Climate and Its Response to Global Warming in the Kiel Climate Model. J Clim 22:71–92. doi:10.1175/2008JCLI2261.1

    Article  Google Scholar 

  • Rashid H, Hirst AC (2015) Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model. ClimDyn. doi:10.1007/s00382-015-2633-y

  • Rayner N, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late Nineteenth Century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reynolds RW (2009) What’s New in Version 2. NOAA/NCDC Rep 1–10

  • Reynolds RW, Smith TM, Liu C et al (2007) Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J Clim 20(22):5473–5496

    Article  Google Scholar 

  • Roeckner E, Baeuml G, Bonaventura L, et al (2003) The atmospheric general circulation model ECHAM 5. PART I: Model description. Max Planck Institute for Meteorology Rep. 349

  • Simmons EAJ, Gibson JK (2000) The ERA-40 project plan. Tech Rep, ERA-40 Project Report Series 1, ECMWF, Reading, United Kingdom

  • Stein K, Schneider N, Timmermann A, Jin F-F (2010) Seasonal synchronization of ENSO events in a linear stochastic model. J Clim 23:5629–5643

    Article  Google Scholar 

  • Stein K, Timmermann A, Schneider N et al (2014) ENSO Seasonal Synchronization Theory. J Clim 27:5285–5310. doi:10.1175/JCLI-D-13-00525.1

    Article  Google Scholar 

  • Stuecker MF, Timmermann A, Jin F-F et al (2013) A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat Geosci 6:540–544. doi:10.1038/ngeo1826

  • Sundqvist H (1978) A parameterization scheme for non-convective condensation including prediction of cloud water content. Q J R MeteorolSoc 104:677–690. doi:10.1002/qj.49710444110

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am MeteorolSoc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

  • Tompkins AM (2002) A prognostic parameterization for the Subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59:1917–1942. doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2

    Article  Google Scholar 

  • Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Niño/Southern Oscillation. Q J R MeteorolSoc 124:1985–2004. doi:10.1002/qj.49712455010

  • Tziperman E, Cane MA, Zebiak SE et al (1995) Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the Quasi-Periodicity route to chaos. J AtmosSci 52:293–306. doi:10.1175/1520-0469(1995)052<0293:IALTTS>2.0.CO;2

    Article  Google Scholar 

  • Tziperman E, Cane MA, Zebiak SE et al (1998) Locking of El Niño’s Peak Time to the End of the Calendar Year in the Delayed Oscillator Picture of ENSO. J Clim 11:2191–2199. doi:10.1175/1520-0442(1998)011<2191:LOENOS>2.0.CO;2

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide. PRISM Tech Rep No 3

  • Wang C, Picaut J (2004) Understanding ENSO physics: a review. GeophysMonogr AGU 147:21–48

  • Webster PJ, Magaña VO, Palmer TN et al (1998) Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res Ocean 103:14451–14510. doi:10.1029/97JC02719

    Article  Google Scholar 

  • Xiang B, Wang B, Ding Q, et al (2011) Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. ClimDyn 39:1413–1430. doi:10.1007/s00382-011-1164-4

  • Xiao H, Mechoso CR (2009) Seasonal cycle–El Niño relationship: validation of hypotheses. J AtmosSci 66:1633–1653

    Article  Google Scholar 

  • Zhang X, Lin W, Zhang M (2007) Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean-atmosphere general circulation models. J Geophys Res 112:D12102. doi:10.1029/2006JD007878

    Article  Google Scholar 

  • Zheng W, Yu Y (2007) ENSO phase-locking in an ocean-atmosphere coupled model FGCM-1.0. AdvAtmosSci 24:833–844. doi:10.1007/s00376-007-0833-z

  • Zheng Y, Lin J-L, Shinoda T (2012) The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: Upper ocean heat budget and feedback analysis. J Geophys Res 117(C5).doi:10.1029/2011jc007746

  • Zhu J, Kumar A, Huang B (2015) The relationship between thermocline depth and SST anomalies in the eastern equatorial Pacific: Seasonality and decadal variations. Geophys Res Lett 42:4507–4515. doi:10.1002/2015GL064220

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the SACCUS project of the German Ministry of Education and Research (BMBF), the European Union’s PREFACE project and the SFB754 “Climate-Biochemistry Interactions in the tropical Ocean”. The climate model integrations were performed at the Computing Centre of Kiel University. We thank Dietmar Dommenget and an anonymous reviewer for helpful comments and feedback on this work. We thank Zhaoyang Song for his help for the Bjerknes Stability Index calculation. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 2 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wengel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 247 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wengel, C., Latif, M., Park, W. et al. Seasonal ENSO phase locking in the Kiel Climate Model: The importance of the equatorial cold sea surface temperature bias. Clim Dyn 50, 901–919 (2018). https://doi.org/10.1007/s00382-017-3648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3648-3

Keywords

Navigation