Skip to main content

Advertisement

Log in

Climate downscaling over South America for 1971–2000: application in SMAP rainfall-runoff model for Grande River Basin

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate model and that data from regional models must be bias-corrected so as to improve their results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abebe AJ, Solomatine DP, Venneker RGW (2000) Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events. Hydrol Sci J 45(3):425–436

    Article  Google Scholar 

  • Ahmed KF, Wang G, Silander J, Wilson AM, Allen JM, Horton R, Anyah R (2013) Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Glob Planet Change 100:320–332

    Article  Google Scholar 

  • Aitken AP (1973) Assessing systematic errors in rainfall-U-runoff models. J Hydrol 20:121–136

    Article  Google Scholar 

  • ANA (2012) Orientações para consistência de dados pluviométricos. Superintendência de Gestão da Rede Hidrometeorológica. SGH, Brasília

    Google Scholar 

  • ANEEL (2008) Atlas de energia elétrica do Brasil, 3rd edn. Agência Nacional de Energia Elétrica, Brasília

    Google Scholar 

  • ANEEL (2012) Agência Nacional de Energia Elétrica. http://www.aneel.gov.br Accessed 01 Dec 2012

  • Block PJ, Souza Filho FA, Sun L, Kwon HH (2009) A streamflow forecasting framework using multiple climate and hydrological models. J Am Water Resour Assoc 45:828–843

    Article  Google Scholar 

  • Bombardi RJ, Carvalho LMV (2009) IPCC global coupled model simulations of the South America monsoon system. Clim Dyn 33:893–916

    Article  Google Scholar 

  • Braga ACFM., Galvão CO, Souza EP, Cavalcanti EP, Fernandes RO, Forte K (2007) Integrated atmospheric and hydrologic modelling for short-term and basin-scale forecasts in a tropical semi-arid context. IAHS-AISH Publ 313:134–140

    Google Scholar 

  • Braga RS, Cataldi M, Oliveira HC (2009) Metodologia para Previsão de Vazões na Bacia do Rio Grande. In: XVIII Simpósio Brasileiro de Recursos Hídricos, Campo Grande

  • Castanharo G, Gilbertoni RFC, Müller II, Adriolo MV, Kaviski E, Guilhon LGF, Rocha VF (2007) Previsão de Vazões na Bacia do Rio Iguaçu Baseada no Modelo SMAP e com Incorporação de Informações de Precipitação. Revista Brasileira de Recursos Hídricos 12:57–68

    Article  Google Scholar 

  • Cavalcanti IFA, Souza CA, Kousky VE (2001) Droughts in Brazil during summer and fall 2001 and associated atmospheric circulation features. Climanálise, São Paulo

    Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30. https://doi.org/10.1007/s10584-006-9210-7

    Article  Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6. https://doi.org/10.1007/s10584-006-9211-6

    Article  Google Scholar 

  • Coelho CAS, Cardoso DHF, Firpo MAF (2015a) Precipitation diagnostics of an exceptionally dry event in São Paulo, Brazil. Theor Appl Climatol. https://doi.org/10.1007/s00704-015-1540-9

    Google Scholar 

  • Coelho CAS, Oliveira CP, Ambrizzi T, Reboita MS, Carpenedo CB, Campos JLPS., Tomaziello ACN, Pampuch LA, Custódio MS, Dutra LMM, Rocha RP, Rehbein A (2015b) The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Clim Dyn 45:1–16

    Article  Google Scholar 

  • Coppola E, Giorgi F, Raffaele F, Fuentes-Franco R, Giuliani G, LLopart-Pereira M, Mamgain A, Mariotti L, Diro GT, Torma C (2014) Present and future climatologies in the phase I CREMA experiment. Clim Change 125:23–38. https://doi.org/10.1007/s10584-014-1137-9

    Article  Google Scholar 

  • Cuadra SV, Rocha RP (2007) Sensitivity of regional climatic simulation over Southeastern South America to SST specification during austral summer. Int J Climatol 27:793–804

    Article  Google Scholar 

  • Déqué M, Rowell DP, Lüthi D, Giorg F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to community climate model. NCAR Tech. Note NCAR/TN-387 + STR, p 72

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models J. Atmos Sci 48(21):2313–2335

    Article  Google Scholar 

  • Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782

    Article  Google Scholar 

  • Fernandez JPR, Franchito SH, Rao VB (2006) Simulation of the summer circulation over South America by two regional climate models. Part I: mean climatology. Theor Appl Climatol 86:247–260

    Article  Google Scholar 

  • Fernández Bou AS, Ventura de Sá R, Cataldi M (2015) Flood forecasting in the upper Uruguay River basin. Nat Hazards 79:1239–1256

    Article  Google Scholar 

  • Fowler HJ, Kilsby CG (2007) Using regional climate model data to simulate historical and future river flows in northwest England. Clim Change 80:337–367

    Article  Google Scholar 

  • Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Clim 3:941–963

    Article  Google Scholar 

  • Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Weather Rev 117:2325–2347

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004) Mean, in-terannual variability and trends in a regional climate change experiment over Europe. I: present day climate (1961–1990). Clim Dyn 22:7333–7756

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Gottschalk L, Motovilov Y (2000) Macro-scale hydrological modelling—a scandinavian experience. In: International symposium on: can science and society save the water crisis in the 21st century. Japan Society of Hydrology and Water Resources. pp 38–45

  • Grell GA, Dudhia J, Stauffer DR (1994) Description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). Tech. Rep. TN-398 + STR, NCAR, Boulder

  • Guilhon LGF, Rocha VF, Moreira JC (2007) Comparação de Métodos de Previsão de Vazões naturais Afluentes a Aproveitamentos Hidrelétricos. Revista Brasileira de Recursos Hídricos 12(3):13–20

    Article  Google Scholar 

  • Hasumi H, Emori S (2004) K-1 coupled GCM (MIROC) description. K-1 technical report, 1. Hasumi H, Emori S (eds) Center for climate system research. University of Tokyo, Tokyo

  • Holtslag AAM, Bruijn EIF, Pan H-L (1990) A high resolution air mass transformation model for shortrange weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • IPT (2008) Diagnóstico da situação dos recursos hídricos na Bacia Hidrográfica do Rio Grande (BHRG)—SP/MG. Relatório Técnico n° 96.581-205., São Paulo

  • Jacob D, Barring L, Christensen O, Christensen J, De Castro M, Deque M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne S, Somot S, Ulden AV, Den Hurk BV (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81(S1):31–52

    Article  Google Scholar 

  • Junior ADA, Rebello E (2002) A Meteorologia e a Gestão de Energia Elétrica. Boletim da Sociedade Brasileira de Meteorologia 26:19–22

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Breigleb BP, Williamson D, Rasch P (1996) Description of the ncar community climate model (ccm3). Tech. Rep. NCAR/TN-420 + STR, Boulder

  • Kjellström E, Ruosteenoja K (2007) Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Clim Change 81:281–291. https://doi.org/10.10007/s10584-006-9219-y

    Article  Google Scholar 

  • Kobiyama M, Vestena LR (2006) Aplicação do método de Penman Modificado no cálculo da evapotranspiração potencial para quatro estações meteorológicas do estado do Paraná. Revista Ciências Exatas e Naturais 8:83–97

    Google Scholar 

  • Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332(3–4):487–496

    Article  Google Scholar 

  • Llopart M, Coppola E, Giorgi F, Porfirio da Rocha R, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Change 125:111–125. https://doi.org/10.1007/s10584-014-1140-1

    Article  Google Scholar 

  • Llopart M, Porfirio da Rocha R, Reboita M, Cuadra SV (2017) Sensitivity of simulated South America climate to the land surface. Clim Dyn 49:3975–3987. https://doi.org/10.1007/s00382-017-3557-5

    Article  Google Scholar 

  • Lopes JEG, Braga BPF, Conejo JGL (1982) SMAP—a simplified hydrologic model. In: Singh VP (ed) Applied modeling in catchment hydrology. Water Resources Publication, Littleton, pp 167–176

    Google Scholar 

  • Loveland TR, Reed BC, Brown JF et al (2000) Development of a global land cover characteristics database and IGBP DISCOVER from 1-km AVHRR data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Marengo JA, Espinoza JC (2015) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int J Climatol 36:1033–1050

    Article  Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J et al (2008) The drought of Amazonia in 2005. J Clim 21:495–516. https://doi.org/10.1175/2007JCLI1600.1

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Mohr KI, Slayback D, Yager KA (2014) Characteristics of precipitation features and annual rainfall during the TRMM era in the Central Andes. J Clim 27(11):3982–4001

    Article  Google Scholar 

  • Oleson KW, Niu G-Y, Yang Z-L et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113:G01021

    Article  Google Scholar 

  • ONS (2005) Revisão das Séries de Vazões Naturais nas Principais Bacias do SIN. Relatório Executivo, Rio de Janeiro

    Google Scholar 

  • Otto FEL, Coelho CAS, King A, Coughlan de Perez E, Wada Y, van Oldenborgh GJ, Haarsma R, Haustein K, Uhe P, van Aalst M, Aravequia JA, Almeida W, Cullen H (2015) Factors other than climate change, main drivers of 2014/15 water shortage in Southeast Brazil. Bull Am Meteorol Soc 96(12):S35–S40. https://doi.org/10.1175/BAMS-EEE_2014_ch8.1

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmos 105(29):579–594

    Google Scholar 

  • Paz LRL, Silva NF, Rosa LP (2007) The paradigm of sustainability in the Brazilian Energy Sector. Renew Sustain Energy Rev 11:1558–1570

    Article  Google Scholar 

  • Pesquero JF, Chou SC, Nobre CA, Marengo JA (2010) Climate downscaling over South America for 1961–1970 using the Eta Model. Theor Appl Climatol 99(1–2):75–93

    Article  Google Scholar 

  • Quadro MFL (1994) Estudo de episódios de Zona de Convergência do Atlântica Sul (ZCAS) sobre a América do Sul. Dissertation, Universidade de São Paulo

  • Rayner NA, Parker DE, Horton EB (2006) UKMO—GISST/MOHMATN4/MOHSST6—Global Ice coverage and SST (1856–2006)

  • Reboita MS, Fernandez JPR, Pereira Llopart M, Porfirio da Rocha R, Albertani Pampuch L, Cruz FT (2014) Assessment of RegCM4.3 over the CORDEX South America domain: sensitivity analysis for physical parameterization schemes. Clim Res 60:215–234. https://doi.org/10.3354/cr01239

    Article  Google Scholar 

  • Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of Regional Climate Model version 3 simulations. J Geophys Res 114:D10108

    Article  Google Scholar 

  • Romatschke U, Houze RA (2010) Extreme summer convection in South America. J Clim 23:3761–3791

    Article  Google Scholar 

  • Sánchez E, Gaertner MA, Gallardo C (2009) Dynamical downscaling of daily precipitation over the Iberian Peninsula: a spatial resolution analysis for present and future climate conditions. Física de la Tierra 21:207–218

    Google Scholar 

  • Satyamurty P, Nobre CA, Silva Dias PL (1998) Tropics—South America. In: Karoly DJ, Vincent. DG (Org.) Meteorology of the Southern Hemisphere, vol 49. Meteorology Monograph, Boston, pp 119–139

    Chapter  Google Scholar 

  • Seth A, Rauscher SA, Camargo SJ, Qian JH, Pal JS (2007) RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dyn 28:461–480

    Article  Google Scholar 

  • Solman SA (2013) Regional climate modeling over South America: a review. Adv Meteorol 1–13

  • Solman SA, Nuñez MN, Cabré M (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30(5):533–552

    Article  Google Scholar 

  • Solman SA, Sanchez E, Samuelsson P, Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC, Berbery H, Treut H, Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139–1157

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456:12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052

    Article  Google Scholar 

  • Tomasella J, Nobre CA (2002) O papel do CPTEC no enfrentamento da crise energética. Boletim da Sociedade Brasileira de Meteorologia 26:23–28

    Google Scholar 

  • Tucci CEM (1993) Hidrologia Ciência e Aplicação. 1. ed. Porto Alegre: Editora da Universidade(UFRGS) e EDUSP, vol 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe das Neves Roque da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.d.N.R., Alves, J.L.D. & Cataldi, M. Climate downscaling over South America for 1971–2000: application in SMAP rainfall-runoff model for Grande River Basin. Clim Dyn 52, 681–696 (2019). https://doi.org/10.1007/s00382-018-4166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4166-7

Keywords

Navigation