Skip to main content
Log in

Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The strengthening and westward shift of Pacific Walker Circulation (PWC) is observed during the recent decades. However, the relative roles of global warming and natural variability on the change in PWC unclearly remain. By conducting numerical atmospheric general circulation model (AGCM) experiments using the spatial SST patterns in the global warming and natural modes which are obtained by the multi-variate EOF analysis from three variables including precipitation, sea surface temperature (SST), and divergent zonal wind, we indicated that the westward shift and strengthening of PWC are caused by the global warming SST pattern in the global warming mode and the negative Interdecadal Pacific Oscillation-like SST pattern in the natural mode. The SST distribution of the Pacific Ocean (PO) has more influence on the changes in equatorial zonal circulations and tropical precipitation than that of the Indian Ocean (IO) and Atlantic Ocean (AO). The change in precipitation is also related to the equatorial zonal circulations variation through the upward and downward motions of the circulations. The IO and AO SST anomalies in the global warming mode can affect on the changes in equatorial zonal circulations, but the influence of PO SST disturbs the changes in Indian Walker Circulation and Atlantic Walker Circulation which are affected by the anomalous SST over the IO and AO. The zonal shift of PWC is found to be highly associated with a zonal gradient of SST over the PO through the idealized numerical AGCM experiments and predictions of CMIP5 models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bayr T, Dommengt D, Martin T, Power SB (2014) The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Clim Dyn 43:2747–2763. doi:10.1007/s00382-014-2091-y

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172. doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observation. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • DiNezio Pn, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee S-K (2009) Climate response of the equatorial pacific to global warming. J Clim 22:4873–4892. doi:10.1175/2009JCLI2982.1

    Article  Google Scholar 

  • England MH, McGregor S, Spence P et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227

    Article  Google Scholar 

  • Hastenrath S (1985) Climate and circulation of the tropics. D. Reisel Publishing Company, Dordrecht

    Book  Google Scholar 

  • Horel JD, Wallace JM (1981) Panetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109:813–829

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471

    Article  Google Scholar 

  • Kim BH, Ha KJ (2015) Observed changes of global and western Pacific precipitation associated with global warming SST mode and mega-ENSO SST mode. Clim Dyn 45:3067–3075. doi:10.1007/s00382-015-2524-2

    Article  Google Scholar 

  • Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupling ocean-atmosphere model. J Clim 8:2181–2199. doi:10.1175/1520-0442(1995)008\2181>2.0.CO;2

    Article  Google Scholar 

  • Kousky VE, Kagano MT, Cavalcanti IF (1984) A review of the Southern Oscillation: oceanic-atmosphric circulation changes and related rainfall anomalies. Tellus A 36:490–504

  • L’Heureux ML, Lee S, Lyon B (2013) Recent multi-decadal strengthening of the Walker circulation across the tropical pacific. Nat Clim Change. doi:10.1038/NCLIMATE1840

    Article  Google Scholar 

  • Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119. doi:10.1007/s00382-012-1564-0

    Article  Google Scholar 

  • Lindzen R, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436. doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2

    Article  Google Scholar 

  • Liu J, Wang B, Cane MA, Yim SY, Lee JY (2013) Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493:656–659

    Article  Google Scholar 

  • Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci 109:18701–18706

  • Ma S, Zhou T (2016) Robust strengthening and westward shift of the tropical pacific Walker circulation during 1979–2012: a comparison of 7 sets of reanalysis data and 26 CMIP5 models. J Clim. doi:10.1175/JCLI-D-15-0398.1

    Article  Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF et al (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892

  • Meng Q, Latif M, Park W, Keenlyside NS, Semenov VA, Martin T (2012) Twentieth century Walker Circulation change: data analysis and model experiments. Clim Dyn 38:1757–1773

    Article  Google Scholar 

  • Moon HJ, Kim BH, Oh HE, Lee JY, Ha KJ (2014) Future change using the CMIP5 MME and best models: I. near and long term future change of temperature and precipitation over East Asia. Atmos Korean Meteorol Soc 24(3):403–417 (Korean)

    Google Scholar 

  • Parker DE, Rayner NA, Horton EB, Folland CK (1999) Development of the Hadley Center sea ice and sea surface temperature data sets (HadISST). WMO workshop on advances in marine climatology-CLIMAR99. Environment Canada, Vancouver, BC, pp 194–203

    Google Scholar 

  • Philander S (1990) El Niño, La Niña, and the southern oscillation. Academic, San Diego

    Google Scholar 

  • Power SB, Kociuba G (2011) What caused the observed twentieth-century weakening of the Walker circulation? J Clim 24:6501–6514. doi:10.1175/2011JCLI4101.1

    Article  Google Scholar 

  • Roeckner E et al (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Rep. 218, 99 pp. Max Planck Inst. For Meteorol, Hamburg, Germany

  • Sandeep S, Stordal F, Sardeshmukh PD, Compo GP (2014) Pacific Walker Circulation variability in coupled and uncoupled climate models. Clim Dyn 43:103–117

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Tokinaga H, Xie S, Deser C, Kosaka Y, Okumura YM (2012a) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nat Res Lett 491:439–443

  • Tokinaga H, Xie S, Timmermann A, McGregor S, Ogata T, Kubota H, Okumura YM (2012b) Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J Clim 25:1689–1710

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Change. doi:10.1038/NCLIMATE2341

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi:10.1175/JCLI4258.1

    Article  Google Scholar 

  • Wang B, Liu J, Kim HJ, Webster PJ, Yim SY, Xiang B (2013) Northern Hemisphere summer monsoon intensified by mega-El Niño southern oscillation and Atlantic multidecadal oscillation. PNAS 110:5347–5352. doi:10.1073/pnas.1219405110

    Article  Google Scholar 

  • Yu B, Boer GJ (2002) The roles of radiation and dynamical processes in the El Niño-like response to global warming. Clim Dyn 19:539–553. doi:10.1007/s00382-002-0244-x

    Article  Google Scholar 

  • Yu B, Zwiers FW (2010) Changes in equatorial atmospheric zonal circulations in recent decades. Geophys Res Lett 37:L05701

    Google Scholar 

  • Yu B, Zwiers FW, Boer GJ, Ting MF (2012) Structure and variances of equatorial zonal circulation in a multimodel ensemble. Clim Dyn 39:2403–2419. doi:10.1007/s00382-012-1372-6

    Article  Google Scholar 

  • Zhang L (2016) The roles of external forcing and natural variability in global warming hiatuses. Clim Dyn 47:3157–3169. doi:10.1007/s00382-016-3018-6

  • Zhang L, Karnauskas KB (2017) The role of tropical interbasin SST gradients in forcing Walker circulation trends. J Clim 30:499–508. doi:10.1175/JCLI-D-16-0.491

    Article  Google Scholar 

  • Zhang L, Li T (2017) Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming. Clim Dyn 48:987–997. doi:10.1007/s00382-016-3123-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) through a Global Research Laboratory (GRL) grant (MEST 2011-0021927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ja Ha.

Additional information

This paper is a contribution to the special issue on East Asian Climate under Global Warming: Understanding and Projection, consisting of papers from the East Asian Climate (EAC) community and the 13th EAC International Workshop in Beijing, China on 24–25 March 2016, and coordinated by Jianping Li, Huang-Hsiung Hsu, Wei-Chyung Wang, Kyung-Ja Ha, Tim Li, and Akio Kitoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BH., Ha, KJ. Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes. Clim Dyn 51, 3999–4013 (2018). https://doi.org/10.1007/s00382-017-3819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3819-2

Keywords

Navigation