Skip to main content

Advertisement

Log in

Linking preconditioning to extreme ENSO events and reduced ensemble spread

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The contribution of the subsurface precursor, defined as the buildup of heat content in the equatorial subsurface prior to El Niño-Southern Oscillation (ENSO) events, to ENSO amplitude and predictability has been unclear for some time. To address the issue, this study implements a careful experimental design to construct three March-initialized precursor ensembles using CCSM4, one ensemble with ENSO-neutral initial conditions, one with a warm precursor in the subsurface, and one with a cold precursor. The initial precursors within each respective ensemble, although generated via identical wind forcing, differ slightly due to intrinsic sources of “noise” in the ocean and atmosphere. The ensembles are then integrated fully-coupled to produce a distribution of outcomes per each type of initial condition. Results show that a precursor is not essential to produce moderate El Niño and the full range of La Niña events, whereas a warm precursor is a necessary condition to generate extreme El Niño. The findings imply that extreme El Niño and the coldest La Niña events are fundamentally different. Presence of a warm (cold) precursor in the initial condition results in a warm (cold) shift and narrowing of the distribution of outcomes, suggesting increased predictability of El Niño (La Niña). Although the cold precursor is not necessary to produce La Niña, its presence in the initial condition reduces La Niña spread more than the warm precursor reduces El Niño spread. Despite the smaller ensemble spread for La Niña, signal-to-noise ratios indicate that El Niño may be more predictable than La Niña.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson DLT, McCreary JP (1985) Slowly propagating disturbances in a coupled ocean-atmosphere model. J Atmos Sci 42:615–630

    Article  Google Scholar 

  • Barnett TP, Graham N, Cane M, Zebiak S, Dolan S, O’brien J, Legler D (1988) On the prediction of the El Niño of 1986–1987. Science 241:192–196

    Article  Google Scholar 

  • Barnston AG, He Y, Glantz MH (1999) Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997-98 El Niño episode and the 1998 La Niña onset. Bull Am Meteorol Soc 80(2):217–243

    Article  Google Scholar 

  • Battisti DS (1988) Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J Atmos Sci 45:2889–2919

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere–ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97, 163–172

    Article  Google Scholar 

  • Busalacchi AJ, Cane MA (1985) Hindcasts of sea level variations during the 1982-83 El Niño. J of Phys Oceanography 15(2):213–221

    Article  Google Scholar 

  • Cane M, Zebiak SE (1985) A theory for El Niño and the Southern Oscillation. Science 228:1084–1087

    Article  Google Scholar 

  • Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832

    Article  Google Scholar 

  • Chen D, Zebiak SE, Busalacchi AJ, Cane MA (1995) An improved procedure for El Niño forecasting: Implications for predictability. Science 269(5231):1699

    Article  Google Scholar 

  • Chen Y-Q, Battisti DS, Palmer TN, Barsugli J, Sarachik ES (1997) A Study of the predictability of tropical pacific sst in a coupled atmosphere–ocean model using singular vector analysis: the role of the annual cycle and the ENSO cycle. Mon Wea Rev 125:831–845

    Article  Google Scholar 

  • Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature 428(6984):733–736

    Article  Google Scholar 

  • DiNezio PN, Deser C (2014) Nonlinear controls on the persistence of La Niña. J Climate 27:7335–7355

    Article  Google Scholar 

  • DiNezio PN, Deser C, Okumura Y, Karspeck A, 2017: Predictability of 2-year La Niña events in a coupled general circulation model. Clim Dyn 1–25

  • Fedorov AV, Harper SL, Philander SG, Winter B, Wittenberg A (2003) How predictable is El Niño? Bull Am Meteorol Soc 84(7):911

    Article  Google Scholar 

  • Goddard L, Graham NE (1997) El Niño in the 1990s. J of Geophys Res: Oceans 102(C5):10423–10436

    Article  Google Scholar 

  • Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. J Climate 16(8):1141–1158

    Article  Google Scholar 

  • Halpert MS, Ropelewski CF (1992) Surface temperature patterns associated with the Southern Oscillation. J Climate 5(6):577–593

    Article  Google Scholar 

  • Hirst AC (1986) Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. J Atmos Sci 43:606–632

    Article  Google Scholar 

  • Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA 113(8):2005–2010.&nbsp

    Article  Google Scholar 

  • Jin FF (1997) An equatorial recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin FF, An SI (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26:2989–2992

    Article  Google Scholar 

  • Jin EK et al. (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dynamics 31:647–664

    Article  Google Scholar 

  • Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29:2125–2128

    Article  Google Scholar 

  • Kessler WS, McPhaden MJ (1995) Oceanic equatorial waves and the 1991-93 El Niño. J Climate 8:1757–1774

    Article  Google Scholar 

  • Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Climate 11(11):2804–2822

    Article  Google Scholar 

  • Kirtman BP, J. Shukla, M. Balmaseda, N. Graham, C. Penland, Y. Xue, and S. Zebiak, 2002: Current status of ENSO forecast skill: a report to the Climate Variability and Predictability (CLIVAR) Numerical Experimentation Group (NEG), CLIVAR Working Group on Seasonal to Interannual Prediction

  • Kirtman BP et al. (2014) The North American Multi-1 Model Ensemble (NMME): phase-1 Seasonal to Interannual Prediction, Phase-2 Toward Developing Intra-Seasonal Prediction. Bull Am Meteor Soc 95:585–601

    Article  Google Scholar 

  • Kleeman R, Moore AM (1997) A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci 54(6):753–767

    Article  Google Scholar 

  • Kleeman R, Moore AM (1999) A new method for determining the reliability of dynamical ENSO predictions. Mon Wea Rev 127(5):694–705

    Article  Google Scholar 

  • Kumar A, Hoerling MP (2000) Analysis of a conceptual model of seasonal climate variability and implications for seasonal prediction. Bull Am Meteor Soc 81(2):255–264

    Article  Google Scholar 

  • Kumar A, Barnston AG, Hoerling MP (2001) Seasonal predictions, probabilistic verifications, and ensemble size. J Climate 14(7):1671–1676

    Article  Google Scholar 

  • Kumar A, Hu Z-Z, Jha B, Peng P (2016) Estimating ENSO predictability based on multi-model hindcasts. Clim Dyn 1–13

  • Larson, S. M. and B. Kirtman, B., 2013: The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett 40(12):3189–3194

    Article  Google Scholar 

  • Larson SM, Kirtman BP (2015a) An alternate approach to ensemble ENSO forecast spread: Application to the 2014 forecast. Geophys Res Lett. doi:10.1002/2015GL066173.

    Google Scholar 

  • Larson SM, Kirtman BP (2015b) Revisiting ENSO coupled instability theory and SST error growth in a fully coupled model. J Clim 28:4724–4742

    Article  Google Scholar 

  • Larson SM, Kirtman BP (2017) Drivers of coupled model ENSO error growth dynamics and the spring predictability barrier. Clim Dyn 48:3631–3644

    Article  Google Scholar 

  • Latif M, D. Anderson, T. Barnett, M. Cane, R. Kleeman, A. Leetmaa, J. O’Brien, A., Rosati A, Schneider E (1998) A review of the predictability and prediction of ENSO. J of Geophys Res: Oceans 103(C7):14375–14393

    Article  Google Scholar 

  • Lengaigne M, E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse, P., Inness, J., Cole J, Slingo J (2004) Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dynamics 23(6):601–620

    Article  Google Scholar 

  • Lengaigne M, Hausmann U, Madec G, Menkès C, Vialard J, Molines JM (2012) Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes. Clim Dynam 38, 1031–1046

    Article  Google Scholar 

  • Levine AF, McPhaden MJ (2016) How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys Res Lett 43(12):6503–6510

    Article  Google Scholar 

  • Li T (1997) Phase transition of the El Niño-Southern Oscillation: A stationary SST mode. J Atmos Sci 54:2872–2887

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997-98 El Niño. Science 283(5404):950–954

    Article  Google Scholar 

  • McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30:1480

    Article  Google Scholar 

  • McPhaden MJ (2015) Playing Hide and Seek with El Niño. Nature Climate Change 5(9):791–795

    Article  Google Scholar 

  • Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Climate 13:3551–3559

    Article  Google Scholar 

  • Menkes CE, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G (2014) About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys Res Lett 41:6476–6483

    Article  Google Scholar 

  • Min Q, Su J, Zhang R, Rong X (2015) What hindered the El Niño pattern in 2014? Geophys Res Lett 42:6762–6770

    Article  Google Scholar 

  • Moore AM, Vialard J, Weaver AT, Anderson DL, Kleeman R, Johnson JR (2003) The role of air–sea interaction in controlling the optimal perturbations of low-frequency tropical coupled ocean–atmosphere modes. J Climate 16(6):951–968

    Article  Google Scholar 

  • Moore, A. M., J. Zavala-Garay, Y. Tang, R. Kleeman, A. T. Weaver, J. Vialard, K. Sahami, D. L. Anderson, and M. Fisher, M., 2006: Optimal forcing patterns for coupled models of ENSO. J. Climate, 19(18), 4683–4699.

    Article  Google Scholar 

  • Philander, S. G. H. (1983) El Niño southern oscillation phenomena. Nature 302:295–301

    Article  Google Scholar 

  • Philander, S. G. H., Yamagata T, Pacanowski RC (1984) Unstable Air-Sea Interactions in the Tropics. J Atmos Sci 41:604–613

    Article  Google Scholar 

  • Picaut J, Ioualalen M, Delcroix T, Masia F, Murtugudde R, Vialard J (2001) The oceanic zone of convergence on the eastern edge of the Pacific warm pool: A synthesis of results and implications for El Niño-Southern Oscillation and biogeochemical phenomena. J of Geophys Res: Oceans 106:2363–2386

    Article  Google Scholar 

  • Puy MJ, Vialard M, Lengaigne M, Guilyardi E (2016) Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Climate Dynamics 46:2155–2178

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110(5):354–384

    Article  Google Scholar 

  • Rayner NA, DE Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108

  • Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114:2352–2362

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Schneider EK, Huang B, Shukla J (1995) Ocean wave dynamics and El Niño. J Climate 8:2415–2439

    Article  Google Scholar 

  • Smith TM, Barnston AG, Ji M, Chelliah M (1995) The impact of Pacific Ocean subsurface data on operational prediction of tropical Pacific SST at the NCEP. Weather Forecasting 10(4):708–714

    Article  Google Scholar 

  • Tang Y, Kleeman R, Moore AM (2005) Reliability of ENSO dynamical predictions. J Atmos Sci 62(6):1770–1791

    Article  Google Scholar 

  • White WB, Pazan SE, Inoue M (1987) Hindcast/forecast of ENSO events based upon the redistribution of observed and model heat content in the western tropical Pacific, 1964–86. J Phys Oceanog 17:264

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J of Geophys Res: Oceans 90(C4):7129–7132

    Article  Google Scholar 

  • Xue Y, Cane MA, Zebiak SE (1997) Predictability of a coupled model of ENSO using singular vector analysis. Part I: optimal growth in seasonal background and ENSO cycles. Mon Wea Rev 125:2043–2056

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño–Southern oscillation. Mon Wea Rev 115:2262–2278

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF grant AGS1450811. SL thanks Clara Deser, Michael McPhaden, and Sang-Ki Lee for comments on a proposal version of this study. We are thankful for the comments and suggestions from two anonymous reviewers that helped improve the manuscript. The authors also acknowledge computational support from the University of Miami Center for Computational Science. SODA reanalysis data can be found at http://dsrs.atmos.umd.edu/DATA/soda_2.2.4/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah M. Larson.

Additional information

This paper is a contribution to the special collection on ENSO Diversity. The special collection aims at improving understanding of the origin, evolution, and impacts of ENSO events that differ in amplitude and spatial patterns, in both observational and modeling contexts, and in the current as well as future climate scenarios. This special collection is coordinated by Antonietta Capotondi, Eric Guilyardi, Ben Kirtman and Sang-Wook Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, S.M., Kirtman, B.P. Linking preconditioning to extreme ENSO events and reduced ensemble spread. Clim Dyn 52, 7417–7433 (2019). https://doi.org/10.1007/s00382-017-3791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3791-x

Keywords

Navigation