Skip to main content
Log in

The effects of remote SST forcings on ENSO dynamics, variability and diversity

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Air-sea interactions with remote regions in the tropical Indian and Atlantic, and extra-tropical oceans can influence ENSO features in the tropical Pacific. In this study these effects are explored by using an AGCM coupled with a Slab Ocean and a simple recharge oscillator ENSO model through switched on/off air-sea interaction in respective ocean area. It is shown that the decoupling in different remote regions has different impacts on ENSO dynamics, variability and diversity. The most interesting result is that the air-sea interactions with remote tropical oceans provide a delayed negative feedback to ENSO similar to that of the tropical Pacific Ocean internal wave dynamics. This is caused by the ENSO teleconnections: they lead to a delayed remote warming and cooling, which in turn feedbacks to ENSO effectively giving a delayed negative feedback. The model simulations suggest that this remote delayed feedback may contribute about 40% to the total delayed negative feedback of ENSO. Thus a central element of ENSO dynamics is partly due to interactions with other tropical ocean basins by atmospheric teleconnections. Furthermore, all remote regions effectively provide stochastic forcings for the ENSO variability and therefore increase the ENSO variability. The influence from the remote regions also causes different patterns of sea surface temperature (SST) variability in the tropical Pacific, contributing to the diversity of the ENSO mode. In particular the extra-tropical Pacific regions force SST variability that is different from the equatorial ENSO mode of variability. The influence that the remote regions have on the ENSO dynamics and variability is significantly altered by the interaction between the equatorial recharge oscillator dynamics and the simple thermodynamic slab ocean processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bayr T, Dommenget D (2014) Comparing the spatial structure of variability in two datasets against each other on the basis of EOF-modes. Clim Dyn 42:1631–1648

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018

    Article  Google Scholar 

  • Bi DH et al (2013) The access coupled model: description, control climate and evaluation. Aust Meteorol Ocean 63:41–64

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1605–1611

    Article  Google Scholar 

  • Burgers G, Jin FF, van Oldenborgh GJ (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32:L13706. doi:10.1029/2005GL022951

    Article  Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Clement A, DiNezio P, Deser C (2011) Rethinking the ocean’s role in the southern oscillation. J Clim 24:4056–4072

    Article  Google Scholar 

  • Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q J R Meteorolog Soc 131:1759–1782

    Article  Google Scholar 

  • Dayan H, Izumo T, Vialard J, Lengaigne M, Masson S (2015) Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections? Clim Dyn 45:583–601

    Article  Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2012) Impact of the equatorial Atlantic on the El Nio Southern Oscillation. Clim Dyn 38:1965–1972

    Article  Google Scholar 

  • Dommenget D (2007) Evaluating EOF modes against a stochastic null hypothesis. Clim Dyn 28:517–531

    Article  Google Scholar 

  • Dommenget D (2010) The slab ocean El Nino. Geophys Res Lett 37:L20701. doi:10.1029/2010GL044888

    Article  Google Scholar 

  • Dommenget D (2011) An objective analysis of the observed spatial structure of the tropical Indian Ocean SST variability. Clim Dyn 36:2129–2145

    Article  Google Scholar 

  • Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys Res Lett 33:L11701. doi:10.1029/2006GL025871

    Article  Google Scholar 

  • Dommenget D, Haase S, Bayr T, Frauen C (2014) Analysis of the Slab Ocean El Nino atmospheric feedbacks in observed and simulated ENSO dynamics. Clim Dyn 42:3187–3205

    Article  Google Scholar 

  • Frauen C, Dommenget D (2010) El Nino and La Nina amplitude asymmetry caused by atmospheric feedbacks. Geophys Res Lett 37:L18801. doi:10.1029/2010GL044444

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. doi:10.1029/2011GL050520

    Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Nino/Southern Oscillation events. Nat Geosci 6:112–116

    Article  Google Scholar 

  • Hasselmann K (1976) Stochastic climate models.1. Theory. Tellus 28:473–485

    Article  Google Scholar 

  • Izumo T et al (2010) Influence of the state of the Indian Ocean dipole on the following year’s El Nino. Nat Geosci 3:168–172

    Article  Google Scholar 

  • Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere–ocean interactions in a conceptual framework. J Clim 22:550–567

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO.2. A stripped-down coupled model. J Atmos Sci 54:830–847

    Article  Google Scholar 

  • Kajtar JB, Santoso A, England MH, Cai WJ (2015) Indo–Pacific climate interactions in the absence of an Indonesian throughflow. J Clim 28:5017–5029

    Article  Google Scholar 

  • Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Climate 19:1784–1801

    Article  Google Scholar 

  • Kug JS, Li T, An SI, Kang IS, Luo JJ, Masson S, Yamagata T (2006) Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys Res Lett 33:L09710. doi:10.1029/2005GL024916

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kug J-S, Choi J, An S-I, Jin F, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239

    Article  Google Scholar 

  • Larson S, Kirtman B (2013) The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett 40:3189–3194

    Article  Google Scholar 

  • Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S, Reichler T, Kim J (2010) Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J Clim 23:5933–5957

    Article  Google Scholar 

  • Martin GM et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757

    Article  Google Scholar 

  • Matei D, Keenlyside N, Latif M, Jungclaus J (2008) Subtropical forcing of tropical Pacific climate and decadal ENSO modulation. J Clim 21:4691–4709

    Article  Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892

    Article  Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res Oceans 103:14261–14290

    Article  Google Scholar 

  • Nnamchi HC, Li JP, Kucharski F, Kang IS, Keenlyside NS, Chang P, Farneti R (2015) Thermodynamic controls of the Atlantic Nino. Nat Commun 6. doi:10.1038/ncomms9895

  • Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian ocean in acceleration of the El Nino to La Nina transition. J Meteorol Soc Jpn 85:335–348

    Article  Google Scholar 

  • Okumura YM (2013) Origins of tropical Pacific decadal variability: role of stochastic atmospheric forcing from the south Pacific. J Clim 26:9791–9796

    Article  Google Scholar 

  • Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Ninos enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi:10.1029/2009GL040048

    Article  Google Scholar 

  • Santoso A, England MH, Cai W (2012) Impact of Indo–Pacific feedback interactions on ENSO dynamics diagnosed using ensemble climate simulations. J Clim 25:7743–7763

    Article  Google Scholar 

  • Tatebe H, Imada Y, Mori M, Kimoto M, Hasumi H (2013) Control of decadal and bidecadal climate variability in the tropical Pacific by the off-equatorial south Pacific Ocean. J Clim 26:6524–6534

    Article  Google Scholar 

  • Terray P, Masson S, Prodhomme C, Roxy MK, Sooraj KP (2016) Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn 46:2507–2533

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Article  Google Scholar 

  • Wang G, Dommenget D, Frauen C (2015) An evaluation of the CMIP3 and CMIP5 simulations in their skill of simulating the spatial structure of SST variability. Clim Dyn 44:95–114

    Article  Google Scholar 

  • Wu RG, Kirtman BP (2004) Understanding the impacts of the Indian ocean on ENSO variability in a coupled GCM. J Clim 17:4019–4031

    Article  Google Scholar 

  • Yeh SW, Wu RG, Kirtman BP (2007) Impact of the Indian Ocean on ENSO variability in a hybrid coupled model. Q J R Meteorolog Soc 133:445–457

    Article  Google Scholar 

  • Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the Central Pacific and Eastern Pacific types of ENSO. J Clim 24:708–720

    Article  Google Scholar 

  • Yu JY, Mechoso CR, McWilliams JC, Arakawa A (2002) Impacts of the Indian Ocean on the ENSO cycle. Geophys Res Lett 29(8):1204. doi:10.1029/2001GL014098

    Article  Google Scholar 

  • Yu YS, Dommenget D, Frauen C, Wang G, Wales S (2016) ENSO dynamics and diversity resulting from the recharge oscillator interacting with the slab ocean. Clim Dyn 46:1665–1682

    Article  Google Scholar 

  • Zhang HH, Clement A, Di Nezio P (2014) The South Pacific meridional mode: a mechanism for ENSO-like variability. J Clim 27:769–783

    Article  Google Scholar 

Download references

Acknowledgements

We like to Thank Asha Vijayeta for helpful comments and suggestions. We also like to thank the two anonymous referees for their helpful comment, which help to improve the manuscript. This study was supported by the ARC project “Beyond the linear dynamics of the El Nino Southern Oscillation”, Australian Research Council (Grant No. DP120101442) and the ARC Centre of Excellence for Climate System Science, Australian Research Council (Grant No. CE110001028). The experiments were performed on the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Dommenget.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dommenget, D., Yu, Y. The effects of remote SST forcings on ENSO dynamics, variability and diversity. Clim Dyn 49, 2605–2624 (2017). https://doi.org/10.1007/s00382-016-3472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3472-1

Keywords

Navigation